1
|
Laufer B, Docherty PD, Murray R, Krueger-Ziolek S, Jalal NA, Hoeflinger F, Rupitsch SJ, Reindl L, Moeller K. Sensor Selection for Tidal Volume Determination via Linear Regression-Impact of Lasso versus Ridge Regression. SENSORS (BASEL, SWITZERLAND) 2023; 23:7407. [PMID: 37687863 PMCID: PMC10490437 DOI: 10.3390/s23177407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
The measurement of respiratory volume based on upper body movements by means of a smart shirt is increasingly requested in medical applications. This research used upper body surface motions obtained by a motion capture system, and two regression methods to determine the optimal selection and placement of sensors on a smart shirt to recover respiratory parameters from benchmark spirometry values. The results of the two regression methods (Ridge regression and the least absolute shrinkage and selection operator (Lasso)) were compared. This work shows that the Lasso method offers advantages compared to the Ridge regression, as it provides sparse solutions and is more robust to outliers. However, both methods can be used in this application since they lead to a similar sensor subset with lower computational demand (from exponential effort for full exhaustive search down to the order of O (n2)). A smart shirt for respiratory volume estimation could replace spirometry in some cases and would allow for a more convenient measurement of respiratory parameters in home care or hospital settings.
Collapse
Affiliation(s)
- Bernhard Laufer
- Institute of Technical Medicine (ITeM), Furtwangen University, 78054 Villingen-Schwenningen, Germany
| | - Paul D. Docherty
- Institute of Technical Medicine (ITeM), Furtwangen University, 78054 Villingen-Schwenningen, Germany
- Department of Mechanical Engineering, University of Canterbury, Christchurch 8041, New Zealand
| | - Rua Murray
- School of Mathematics and Statistics, University of Canterbury, Christchurch 8041, New Zealand
| | - Sabine Krueger-Ziolek
- Institute of Technical Medicine (ITeM), Furtwangen University, 78054 Villingen-Schwenningen, Germany
| | - Nour Aldeen Jalal
- Institute of Technical Medicine (ITeM), Furtwangen University, 78054 Villingen-Schwenningen, Germany
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, 04109 Leipzig, Germany
| | - Fabian Hoeflinger
- Department of Microsystems Engineering, University of Freiburg, 79085 Freiburg, Germany
| | - Stefan J. Rupitsch
- Department of Microsystems Engineering, University of Freiburg, 79085 Freiburg, Germany
| | - Leonhard Reindl
- Department of Microsystems Engineering, University of Freiburg, 79085 Freiburg, Germany
| | - Knut Moeller
- Institute of Technical Medicine (ITeM), Furtwangen University, 78054 Villingen-Schwenningen, Germany
- Department of Mechanical Engineering, University of Canterbury, Christchurch 8041, New Zealand
- Department of Microsystems Engineering, University of Freiburg, 79085 Freiburg, Germany
| |
Collapse
|
2
|
Laufer B, Krueger-Ziolek S, Docherty PD, Hoeflinger F, Reindl L, Moeller K. An alternative way to measure respiration induced changes of circumferences: a pilot study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:4632-4635. [PMID: 33019026 DOI: 10.1109/embc44109.2020.9175578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Various measurement systems can be used to obtain dynamic circumferences of the human upper body, but each of these systems has disadvantages. In this feasibility study we introduce a non-invasive and wearable thoracic belt to measure dynamic changes of circumferences of thorax or abdomen. To evaluate this approach, five subjects undertook various breaths of disparate tidal volumes, which were measured by the belt and simultaneously by a motion capture system which provided a reference metric.The results of the belt concurred with the reference system. A coefficient of determination (adjusted R2) of 0.99 and a mean squared error of less than 0.87 mm2 showed that the belt is capable of measuring changes accurately and a couple of respiratory parameters, such as the respiratory rate, can be obtained.Clinical Relevance-The introduced system links surface motions of the upper body with the underlying respiratory mechanics. Thus it provides some respiratory parameters without the disadvantages of a facemask or a mouthpiece. The system could allow the analysis of breathing status in some clinical applications and could be used for low-cost monitoring in homecare or to analyse respiratory parameters during sports.
Collapse
|