1
|
Wei L, Mooney C. Transfer Learning-based Seizure Detection on Multiple Channels of Paediatric EEGs. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083076 DOI: 10.1109/embc40787.2023.10340210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Epilepsy is a common neurological disease characterised by recurring seizures that affect up to 70 million people worldwide. During the first ten years of life, approximately one in every 150 children is diagnosed with epilepsy. EEG is an important tool for diagnosing seizures and other brain disorders. However, expert visual analysis of EEGs is time-consuming. In addition to reducing expert annotation time, the automatic seizure detection method is a powerful tool for assisting experts with the analysis of EEGs. Research on the automated detection of seizures in pediatric EEG has been limited. Deep learning algorithms are typically used in paediatric seizure detection methods; however, they are computationally expensive and take a long time to develop. This problem can be solved using transfer learning. In this study, we developed a transfer learning-based seizure detection method on multiple channels of paediatric EEGs. The publicly available CHB-MIT EEG dataset was used to build our method. The dataset was split into training (n=14), validation (n=4), and testing (n=6). Spectrograms generated from 10 s EEG signals with 5 s overlap were used as the input into three pre-trained transfer learning models (ResNet50, VGG16 and InceptionV3). We took care to separate the children into either the training or test set to ensure that the test set was independent. Based on the EEG test set, the method has 85.41% accuracy, 85.94% recall, and 85.49% precision. This method has the potential to assist researchers and clinicians in the automated analysis of seizures in paediatric EEGs.
Collapse
|
2
|
Li X, Huang Y, Lhatoo SD, Tao S, Vilella Bertran L, Zhang GQ, Cui L. A hybrid unsupervised and supervised learning approach for postictal generalized EEG suppression detection. Front Neuroinform 2022; 16:1040084. [PMID: 36601382 PMCID: PMC9806125 DOI: 10.3389/fninf.2022.1040084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022] Open
Abstract
Sudden unexpected death of epilepsy (SUDEP) is a catastrophic and fatal complication of epilepsy and is the primary cause of mortality in those who have uncontrolled seizures. While several multifactorial processes have been implicated including cardiac, respiratory, autonomic dysfunction leading to arrhythmia, hypoxia, and cessation of cerebral and brainstem function, the mechanisms underlying SUDEP are not completely understood. Postictal generalized electroencephalogram (EEG) suppression (PGES) is a potential risk marker for SUDEP, as studies have shown that prolonged PGES was significantly associated with a higher risk of SUDEP. Automated PGES detection techniques have been developed to efficiently obtain PGES durations for SUDEP risk assessment. However, real-world data recorded in epilepsy monitoring units (EMUs) may contain high-amplitude signals due to physiological artifacts, such as breathing, muscle, and movement artifacts, making it difficult to determine the end of PGES. In this paper, we present a hybrid approach that combines the benefits of unsupervised and supervised learning for PGES detection using multi-channel EEG recordings. A K-means clustering model is leveraged to group EEG recordings with similar artifact features. We introduce a new learning strategy for training a set of random forest (RF) models based on clustering results to improve PGES detection performance. Our approach achieved a 5-second tolerance-based detection accuracy of 64.92%, a 10-second tolerance-based detection accuracy of 79.85%, and an average predicted time distance of 8.26 seconds with 286 EEG recordings using leave-one-out (LOO) cross-validation. The results demonstrated that our hybrid approach provided better performance compared to other existing approaches.
Collapse
Affiliation(s)
- Xiaojin Li
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, United States,Texas Institute for Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yan Huang
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, United States,Texas Institute for Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Samden D. Lhatoo
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, United States,Texas Institute for Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Shiqiang Tao
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, United States,Texas Institute for Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Laura Vilella Bertran
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, United States,Texas Institute for Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Guo-Qiang Zhang
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, United States,Texas Institute for Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, TX, United States,School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States,*Correspondence: Guo-Qiang Zhang
| | - Licong Cui
- Texas Institute for Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, TX, United States,School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States,Licong Cui
| |
Collapse
|
3
|
Warm D, Bassetti D, Schroer J, Luhmann HJ, Sinning A. Spontaneous Activity Predicts Survival of Developing Cortical Neurons. Front Cell Dev Biol 2022; 10:937761. [PMID: 36035995 PMCID: PMC9399774 DOI: 10.3389/fcell.2022.937761] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Spontaneous activity plays a crucial role in brain development by coordinating the integration of immature neurons into emerging cortical networks. High levels and complex patterns of spontaneous activity are generally associated with low rates of apoptosis in the cortex. However, whether spontaneous activity patterns directly encode for survival of individual cortical neurons during development remains an open question. Here, we longitudinally investigated spontaneous activity and apoptosis in developing cortical cultures, combining extracellular electrophysiology with calcium imaging. These experiments demonstrated that the early occurrence of calcium transients was strongly linked to neuronal survival. Silent neurons exhibited a higher probability of cell death, whereas high frequency spiking and burst behavior were almost exclusively detected in surviving neurons. In local neuronal clusters, activity of neighboring neurons exerted a pro-survival effect, whereas on the functional level, networks with a high modular topology were associated with lower cell death rates. Using machine learning algorithms, cell fate of individual neurons was predictable through the integration of spontaneous activity features. Our results indicate that high frequency spiking activity constrains apoptosis in single neurons through sustained calcium rises and thereby consolidates networks in which a high modular topology is reached during early development.
Collapse
|
4
|
Lai Z, Vadlaputi P, Tancredi DJ, Garg M, Koppel RI, Goodman M, Hogan W, Cresalia N, Juergensen S, Manalo E, Lakshminrusimha S, Chuah CN, Siefkes H. Enhanced Critical Congenital Cardiac Disease Screening by Combining Interpretable Machine Learning Algorithms. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1403-1406. [PMID: 34891547 PMCID: PMC8890698 DOI: 10.1109/embc46164.2021.9630111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Critical Congenital Heart Disease (CCHD) screening that only uses oxygen saturation (SpO2), measured by pulse oximetry, fails to detect an estimated 900 US newborns annually. The addition of other pulse oximetry features such as perfusion index (PIx), heart rate, pulse delay and photoplethysmography characteristics may improve detection of CCHD, especially those with systemic blood flow obstruction such as Coarctation of the Aorta (CoA). To comprehensively study the most relevant features associated with CCHD, we investigated interpretable machine learning (ML) algorithms by using Recursive Feature Elimination (RFE) to identify an optimal subset of features. We then incorporated the trained ML models into the current SpO2-alone screening algorithm. Our proposed enhanced CCHD screening system, which adds the ML model, improved sensitivity by approximately 10 percentage points compared to the current standard SpO2-alone method with minimal to no impact on specificity.Clinical relevance- This establishes proof of concept for a ML algorithm that combines pulse oximetry features to improve detection of CCHD with little impact on false positive rate.
Collapse
|
5
|
Wei L, Ventura S, Mathieson S, Boylan G, Lowery M, Mooney C. Spindle-AI: Sleep spindle number and duration estimation in infant EEG. IEEE Trans Biomed Eng 2021; 69:465-474. [PMID: 34280088 DOI: 10.1109/tbme.2021.3097815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Sleep spindle features show developmental changes during infancy and have the potential to provide an early biomarker for abnormal brain maturation. Manual identification of sleep spindles in the electroencephalogram (EEG) is time-consuming and typically requires highly-trained experts. Automated detection of sleep spindles would greatly facilitate this analysis. Research on the automatic detection of sleep spindles in infant EEG has been limited to-date. METHODS We present a random forest-based sleep spindle detection method (Spindle-AI) to estimate the number and duration of sleep spindles in EEG collected from 141 ex-term born infants, recorded at 4 months of age. The signal on channel F4-C4 was split into a training set (81 ex-term) and a validation set (30 ex-term). An additional 30 ex-term infant EEGs (channel F4-C4 and channel F3-C3) were used as an independent test set. Fourteen features were selected for input into a random forest algorithm to estimate the number and duration of spindles and the results were compared against sleep spindles annotated by an experienced clinical physiologist. RESULTS The prediction of the number of sleep spindles in the independent test set demonstrated 93.3% to 93.9% sensitivity, 90.7% to 91.5% specificity, and 89.2% to 90.1% precision. The duration estimation of sleep spindle events in the independent test set showed a percent error of 5.7% to 7.4%. CONCLUSION AND SIGNIFICANCE Spindle-AI has been implemented as a web server that has the potential to assist clinicians in the fast and accurate monitoring of sleep spindles in infant EEGs.
Collapse
|