1
|
Abstract
Bioadhesives have emerged as transformative and versatile tools in healthcare, offering the ability to attach tissues with ease and minimal damage. These materials present numerous opportunities for tissue repair and biomedical device integration, creating a broad landscape of applications that have captivated clinical and scientific interest alike. However, fully unlocking their potential requires multifaceted design strategies involving optimal adhesion, suitable biological interactions, and efficient signal communication. In this Review, we delve into these pivotal aspects of bioadhesive design, highlight the latest advances in their biomedical applications, and identify potential opportunities that lie ahead for bioadhesives as multifunctional technology platforms.
Collapse
Affiliation(s)
- Sarah J Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Yu Y, Lowe A, Anand G, Kalra A, Zhang H. The Investigation of Bio-impedance Analysis at a Wrist Phantom with Two Pulsatile Arteries. Cardiovasc Eng Technol 2023; 14:810-826. [PMID: 37848736 DOI: 10.1007/s13239-023-00689-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023]
Abstract
PURPOSE Bio-impedance analysis (BIA) has been widely investigated for hemodynamic monitoring. However, previous works rarely modelled two synchronously pulsatile arteries (representing the radial and ulnar arteries) in the wrist/forearm model. This work aims to clarify and quantify the influences of two pulsatile arteries on BIA. METHODS First, two blood-filled arteries were structured in a 3D wrist segment using the finite element method (FEM). Afterwards, an easy-to-produce two-arteries artificial wrist was fabricated with two components: gelatine-based surrounding tissue phantom and saline blood phantom. A syringe driver was utilised to constrict the arteries, and the impedance signals were measured using a Multi-frequency Impedance Analyser (MFIA). RESULTS Both simulation and experimental results demonstrated the non-negligible influences of the ulnar artery on the overall BIA, inducing unwanted resistance changes to the acquired signals from the radial artery. The phantom experiments revealed the summation of the individual resistance changes caused by a single pulsatile artery was approximately equal to the measured resistance change caused by two synchronously pulsatile arteries, confirming the measured impedance signal at the wrist contains the pulsatile information from both arteries. CONCLUSION This work is the first simulation and phantom investigation into two synchronously pulsatile arteries under BIA in the distal forearm, providing a better insight and understanding in the morphology of measured impedance signals. Future research can accordingly select either a small spacing 4-spot electrode configuration for a single artery sensing or a band electrode configuration for overall pulsatile arteries sensing. A more accurate estimation of blood volume change and pulse wave analysis (PWA) could help to develop cuffless blood pressure measurement (BPM).
Collapse
Affiliation(s)
- Yang Yu
- Institute of Biomedical Technologies, Auckland University of Technology, Auckland, 1010, New Zealand.
| | - Andrew Lowe
- Institute of Biomedical Technologies, Auckland University of Technology, Auckland, 1010, New Zealand
| | - Gautam Anand
- Institute of Biomedical Technologies, Auckland University of Technology, Auckland, 1010, New Zealand
| | - Anubha Kalra
- Institute of Biomedical Technologies, Auckland University of Technology, Auckland, 1010, New Zealand
| | - Huiyang Zhang
- Institute of Biomedical Technologies, Auckland University of Technology, Auckland, 1010, New Zealand
| |
Collapse
|
3
|
Metshein M, Abdullayev A, Gautier A, Larras B, Frappe A, Cardiff B, Annus P, Land R, Märtens O. Sensor-Location-Specific Joint Acquisition of Peripheral Artery Bioimpedance and Photoplethysmogram for Wearable Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:7111. [PMID: 37631647 PMCID: PMC10457752 DOI: 10.3390/s23167111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Cardiovascular diseases (CVDs), being the culprit for one-third of deaths globally, constitute a challenge for biomedical instrumentation development, especially for early disease detection. Pulsating arterial blood flow, providing access to cardiac-related parameters, involves the whole body. Unobtrusive and continuous acquisition of electrical bioimpedance (EBI) and photoplethysmography (PPG) constitute important techniques for monitoring the peripheral arteries, requiring novel approaches and clever means. METHODS In this work, five peripheral arteries were selected for EBI and PPG signal acquisition. The acquisition sites were evaluated based on the signal morphological parameters. A small-data-based deep learning model, which increases the data by dividing them into cardiac periods, was proposed to evaluate the continuity of the signals. RESULTS The highest sensitivity of EBI was gained for the carotid artery (0.86%), three times higher than that for the next best, the posterior tibial artery (0.27%). The excitation signal parameters affect the measured EBI, confirming the suitability of classical 100 kHz frequency (average probability of 52.35%). The continuity evaluation of the EBI signals confirmed the advantage of the carotid artery (59.4%), while the posterior tibial artery (49.26%) surpasses the radial artery (48.17%). The PPG signal, conversely, commends the location of the posterior tibial artery (97.87%). CONCLUSIONS The peripheral arteries are highly suitable for non-invasive EBI and PPG signal acquisition. The posterior tibial artery constitutes a candidate for the joint acquisition of EBI and PPG signals in sensor-fusion-based wearable devices-an important finding of this research.
Collapse
Affiliation(s)
- Margus Metshein
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia
| | - Anar Abdullayev
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia
| | - Antoine Gautier
- University Lille, CNRS, Centrale Lille, Junia, University Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France
| | - Benoit Larras
- University Lille, CNRS, Centrale Lille, Junia, University Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France
| | - Antoine Frappe
- University Lille, CNRS, Centrale Lille, Junia, University Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France
| | - Barry Cardiff
- School of Electrical and Electronic Engineering, University College Dublin, D04V1W8 Dublin, Ireland
| | - Paul Annus
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia
| | - Raul Land
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia
| | - Olev Märtens
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia
| |
Collapse
|
4
|
Yu Y, Lowe A, Anand G, Kalra A, Zhang H. The effects of tissue proportions on blood volume change-induced variations using bio-impedance analysis: a simulation study . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082597 DOI: 10.1109/embc40787.2023.10340562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Bioimpedance Analysis (BIA) along the radial artery has been widely investigated for hemodynamic monitoring. However, its applicability to different body type populations still lacks sufficient research. The Finite Element Method (FEM) was performed on three different wrist models using ANSYS HFSS, aiming to reveal the influences of different fat and muscle proportions on the sensitivity of blood volume change-induced bioimpedance change. The simulation results confirmed that the current density in each tissue mainly depended on the conductivity of tissues. The higher conductivity of the tissue, the higher current density inside said tissue. The amounts of flowing current were decided by both volume and conductivity of tissues. Moreover, increasing the fat layer thickness from 4 mm to 6 mm raised simulated impedance from 86.82 Ω to 100.39 Ω and impedance change from 0.63 Ω to 1.55 Ω. However, a higher muscle proportion occupied more injected current from the blood and resulted in lower impedance change. Therefore, for the overweight population, the placement of BIA is recommended to avoid the muscular body parts for the acquirement of better-quality pulse waves.Clinical Relevance-This establishes the bio-impedance analysis should avoid the muscular body parts for a better blood pulse wave quality for overweight populations.
Collapse
|
5
|
Sel K, Osman D, Huerta N, Edgar A, Pettigrew RI, Jafari R. Continuous cuffless blood pressure monitoring with a wearable ring bioimpedance device. NPJ Digit Med 2023; 6:59. [PMID: 36997608 PMCID: PMC10063561 DOI: 10.1038/s41746-023-00796-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/10/2023] [Indexed: 04/01/2023] Open
Abstract
Smart rings provide unique opportunities for continuous physiological measurement. They are easy to wear, provide little burden in comparison to other smart wearables, are suitable for nocturnal settings, and can be sized to provide ideal contact between the sensors and the skin at all times. Continuous measuring of blood pressure (BP) provides essential diagnostic and prognostic value for cardiovascular health management. However, conventional ambulatory BP measurement devices operate using an inflating cuff that is bulky, intrusive, and impractical for frequent or continuous measurements. We introduce ring-shaped bioimpedance sensors leveraging the deep tissue sensing ability of bioimpedance while introducing no sensitivity to skin tones, unlike optical modalities. We integrate unique human finger finite element model with exhaustive experimental data from participants and derive optimum design parameters for electrode placement and sizes that yields highest sensitivity to arterial volumetric changes, with no discrimination against varying skin tones. BP is constructed using machine learning algorithms. The ring sensors are used to estimate arterial BP showing peak correlations of 0.81, and low error (systolic BP: 0.11 ± 5.27 mmHg, diastolic BP: 0.11 ± 3.87 mmHg) for >2000 data points and wide BP ranges (systolic: 89-213 mmHg and diastolic: 42-122 mmHg), highlighting the significant potential use of bioimpedance ring for accurate and continuous estimation of BP.
Collapse
Affiliation(s)
- Kaan Sel
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Deen Osman
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Noah Huerta
- Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA
| | - Arabella Edgar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | | | - Roozbeh Jafari
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
- School of Engineering Medicine, Texas A&M University, Houston, TX, USA.
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
6
|
Phipps JF, Sel K, Jafari R. Arterial Pulse Localization with Varying Electrode Sizes and Spacings in Wrist-Worn Bioimpedance Sensing. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:2886-2890. [PMID: 36085964 DOI: 10.1109/embc48229.2022.9871270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bioimpedance has emerged as a promising modality to continuously monitor hemodynamic and respiratory physiological parameters through a non-invasive skin-contact approach. Bioimpedance sensors placed at the radial zone of the volar wrist provide sensitive operation to the blood flow of the underlying radial artery. The translation of bioimpedance systems into medical-grade settings for continuous hemodynamic monitoring, however, presents challenges when constraining the necessary sensing components to a minimal form factor while maintaining sufficient accuracy and precision of measurements. Thus, it is important to understand the effects of electrode configuration on bioimpedance signals when reducing them to a wearable form factor. Previous work regarding electrode configurations in bioimpedance does not address wearable constraints, nor do they focus on electrodes viable for wearable applications. In this study, we present empirical evidence of the effects of dry silver electrode sizes and spacings on the specificity and sensitivity of a wrist-worn bioimpedance sensor array. We found that wrist-worn bioimpedance systems for hemodynamic monitoring would benefit from reduced injection electrode spacings (up to a 392% increase in signal amplitude with a 50% decrease in spacing), increased sensing electrode spacings, and decreased electrode surface areas. Clinical Relevance - The work directly contributes towards the development of cuffless continuous blood pressure monitors with applications in clinical and ambulatory settings.
Collapse
|
7
|
Osman D, Jankovic M, Sel K, Pettigrew RI, Jafari R. Blood Pressure Estimation using a Single Channel Bio-Impedance Ring Sensor. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:4286-4290. [PMID: 36086457 DOI: 10.1109/embc48229.2022.9871653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The demand for non-obtrusive, accurate, and continuous blood pressure (BP) monitoring systems is becoming more prevalent with the realization of its significance in preventable cardiovascular disease (CVD) globally. Current cuff-based standards are bulky, uncomfortable, and are limited to discrete recording periods. Wearable sensor technologies such as those using optical photoplethysmography (PPG) have been used to develop blood pressure estimation models through a variety of methods. However, this technology falls short as optical based systems have bias favoring lighter skin tones and lower body fat compositions. Bioimpedance (Bio-Z) is a capable modality of sensing arterial blood flow without implicit inadvertent bias towards individuals. In this paper we propose a ring-based bioimpedance system to capture arterial blood flow from the digital artery of the finger. The ring design provides a more compact wearable device utilizing only a single Bio-Z channel, making it a familiar fit to individuals. Post-processing the acquired Bio-Z signals, we extracted 9 frequency domain features from windowed beat cycles to train subject specific regression models. Results indicate the average mean absolute errors for systolic/diastolic BP to be 4.38/3.63mmHg, consistent with AAMI standards.
Collapse
|
8
|
Sel K, Osman D, Jafari R. Non-Invasive Cardiac and Respiratory Activity Assessment From Various Human Body Locations Using Bioimpedance. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2021; 2:210-217. [PMID: 34458855 PMCID: PMC8388562 DOI: 10.1109/ojemb.2021.3085482] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Objective: Bioimpedance sensing is a powerful technique that measures the tissue impedance and captures important physiological parameters including blood flow, lung movements, muscle contractions, body fluid shifts, and other cardiovascular parameters. This paper presents a comprehensive analysis of the modality at different arterial (ulnar, radial, tibial, and carotid arteries) and thoracic (side-rib cage and top thoracolumbar fascia) body regions and offers insights into the effectiveness of capturing various cardiac and respiratory activities. Methods: We assess the bioimpedance performance in estimating inter-beat (IBI) and inter -breath intervals (IBrI) on six-hours of data acquired in a pilot-study from five healthy participants at rest. Results: Overall, we achieve mean errors as low as 0.003 ± 0.002 and 0.67 ± 0.28 seconds for IBI and IBrI estimations, respectively. Conclusions: The results show that bioimpedance can be effectively used to monitor cardiac and respiratory activities both at limbs and upper body and demonstrate a strong potential to be adopted by wearables that aim to provide high-fidelity physiological sensing to address precision medicine needs.
Collapse
Affiliation(s)
- Kaan Sel
- Texas A&M University, College Station, TX 77843 USA
| | - Deen Osman
- Texas A&M University, College Station, TX 77843 USA
| | | |
Collapse
|