1
|
Galaz-Montoya JG. The advent of preventive high-resolution structural histopathology by artificial-intelligence-powered cryogenic electron tomography. Front Mol Biosci 2024; 11:1390858. [PMID: 38868297 PMCID: PMC11167099 DOI: 10.3389/fmolb.2024.1390858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024] Open
Abstract
Advances in cryogenic electron microscopy (cryoEM) single particle analysis have revolutionized structural biology by facilitating the in vitro determination of atomic- and near-atomic-resolution structures for fully hydrated macromolecular complexes exhibiting compositional and conformational heterogeneity across a wide range of sizes. Cryogenic electron tomography (cryoET) and subtomogram averaging are rapidly progressing toward delivering similar insights for macromolecular complexes in situ, without requiring tags or harsh biochemical purification. Furthermore, cryoET enables the visualization of cellular and tissue phenotypes directly at molecular, nanometric resolution without chemical fixation or staining artifacts. This forward-looking review covers recent developments in cryoEM/ET and related technologies such as cryogenic focused ion beam milling scanning electron microscopy and correlative light microscopy, increasingly enhanced and supported by artificial intelligence algorithms. Their potential application to emerging concepts is discussed, primarily the prospect of complementing medical histopathology analysis. Machine learning solutions are poised to address current challenges posed by "big data" in cryoET of tissues, cells, and macromolecules, offering the promise of enabling novel, quantitative insights into disease processes, which may translate into the clinic and lead to improved diagnostics and targeted therapeutics.
Collapse
Affiliation(s)
- Jesús G. Galaz-Montoya
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, United States
| |
Collapse
|
2
|
Zeng X, Ding Y, Zhang Y, Uddin MR, Dabouei A, Xu M. DUAL: deep unsupervised simultaneous simulation and denoising for cryo-electron tomography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.02.583135. [PMID: 38496657 PMCID: PMC10942334 DOI: 10.1101/2024.03.02.583135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Recent biotechnological developments in cryo-electron tomography allow direct visualization of native sub-cellular structures with unprecedented details and provide essential information on protein functions/dysfunctions. Denoising can enhance the visualization of protein structures and distributions. Automatic annotation via data simulation can ameliorate the time-consuming manual labeling of large-scale datasets. Here, we combine the two major cryo-ET tasks together in DUAL, by a specific cyclic generative adversarial network with novel noise disentanglement. This enables end-to-end unsupervised learning that requires no labeled data for training. The denoising branch outperforms existing works and substantially improves downstream particle picking accuracy on benchmark datasets. The simulation branch provides learning-based cryo-ET simulation for the first time and generates synthetic tomograms indistinguishable from experimental ones. Through comprehensive evaluations, we showcase the effectiveness of DUAL in detecting macromolecular complexes across a wide range of molecular weights in experimental datasets. The versatility of DUAL is expected to empower cryo-ET researchers by improving visual interpretability, enhancing structural detection accuracy, expediting annotation processes, facilitating cross-domain model adaptability, and compensating for missing wedge artifacts. Our work represents a significant advancement in the unsupervised mining of protein structures in cryo-ET, offering a multifaceted tool that facilitates cryo-ET research.
Collapse
Affiliation(s)
- Xiangrui Zeng
- Ray and Stephanie Lane Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Yizhe Ding
- Department of Statistics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yueqian Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Mostofa Rafid Uddin
- Ray and Stephanie Lane Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Ali Dabouei
- Ray and Stephanie Lane Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Min Xu
- Ray and Stephanie Lane Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
3
|
Zhao C, Lu D, Zhao Q, Ren C, Zhang H, Zhai J, Gou J, Zhu S, Zhang Y, Gong X. Computational methods for in situ structural studies with cryogenic electron tomography. Front Cell Infect Microbiol 2023; 13:1135013. [PMID: 37868346 PMCID: PMC10586593 DOI: 10.3389/fcimb.2023.1135013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 08/29/2023] [Indexed: 10/24/2023] Open
Abstract
Cryo-electron tomography (cryo-ET) plays a critical role in imaging microorganisms in situ in terms of further analyzing the working mechanisms of viruses and drug exploitation, among others. A data processing workflow for cryo-ET has been developed to reconstruct three-dimensional density maps and further build atomic models from a tilt series of two-dimensional projections. Low signal-to-noise ratio (SNR) and missing wedge are two major factors that make the reconstruction procedure challenging. Because only few near-atomic resolution structures have been reconstructed in cryo-ET, there is still much room to design new approaches to improve universal reconstruction resolutions. This review summarizes classical mathematical models and deep learning methods among general reconstruction steps. Moreover, we also discuss current limitations and prospects. This review can provide software and methods for each step of the entire procedure from tilt series by cryo-ET to 3D atomic structures. In addition, it can also help more experts in various fields comprehend a recent research trend in cryo-ET. Furthermore, we hope that more researchers can collaborate in developing computational methods and mathematical models for high-resolution three-dimensional structures from cryo-ET datasets.
Collapse
Affiliation(s)
- Cuicui Zhao
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Da Lu
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Qian Zhao
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Chongjiao Ren
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Huangtao Zhang
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Jiaqi Zhai
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Jiaxin Gou
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Shilin Zhu
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Yaqi Zhang
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Xinqi Gong
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
- Beijing Academy of Intelligence, Beijing, China
| |
Collapse
|