1
|
Kulich HR, Bass SR, Koontz AM. Rehabilitation professional and user evaluation of an integrated push-pull lever drive system for wheelchair mobility. Assist Technol 2024; 36:329-337. [PMID: 33079646 DOI: 10.1080/10400435.2020.1836068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2020] [Indexed: 10/23/2022] Open
Abstract
Wheeled mobility devices enable persons with limited mobility to maintain an independent lifestyle. Lever-drive propulsion options have been shown to increase wheeled mobility device efficiency while reducing physical strain on users. Despite these benefits, they have not been widely adopted for everyday use. Two novel lever-drive devices (RoScooter and RoTrike) provide an alternative to pushrim propulsion by using an integrated front-and-center push-pull lever mechanism. The objectives of this study were to assess the usability and performance of the lever-drive devices using both rehabilitation professional and user feedback. The study enrolled 17 rehabilitation professionals and 13 users who performed various mobility tasks to rate the performance of the RoScooter and RoTrike for ease of use, stability, safety, appearance, and comfort. Users were graded on their performance using a scoring system based on the Wheelchair Skills Test. Rehabilitation professionals suggested improvements in regard to adjustability, maneuverability, target population, and appearance, preferring the operations of the RoScooter to the RoTrike. Users reported that the devices were entertaining and easy to use, but improvements in adjustability, reversal methods, and operation options to appeal to a wider range of consumers are needed before lever-drive devices are suitable to replace or supplement current wheeled mobility devices.
Collapse
Affiliation(s)
- Hailee R Kulich
- Human Engineering Research Laboratories, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
- Department of Rehabilitation Science and Technology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah R Bass
- Human Engineering Research Laboratories, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
- Department of Rehabilitation Science and Technology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alicia M Koontz
- Human Engineering Research Laboratories, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
- Department of Rehabilitation Science and Technology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Swanson VA, Johnson C, Zondervan DK, Bayus N, McCoy P, Ng YFJ, Schindele, BS J, Reinkensmeyer DJ, Shaw S. Optimized Home Rehabilitation Technology Reduces Upper Extremity Impairment Compared to a Conventional Home Exercise Program: A Randomized, Controlled, Single-Blind Trial in Subacute Stroke. Neurorehabil Neural Repair 2023; 37:53-65. [PMID: 36636751 PMCID: PMC9896541 DOI: 10.1177/15459683221146995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Upper extremity (UE) stroke rehabilitation requires patients to perform exercises at home, yet patients show limited benefit from paper-based home exercise programs. OBJECTIVE To compare the effectiveness of 2 home exercise programs for reducing UE impairment: a paper-based approach and a sensorized exercise system that incorporates recommended design features for home rehabilitation technology. METHODS In this single-blind, randomized controlled trial, 27 participants in the subacute phase of stroke were assigned to the sensorized exercise (n = 14) or conventional therapy group (n = 13), though 2 participants in the conventional therapy group were lost to follow-up. Participants were instructed to perform self-guided movement training at home for at least 3 hours/week for 3 consecutive weeks. The sensorized exercise group used FitMi, a computer game with 2 puck-like sensors that encourages movement intensity and auto-progresses users through 40 exercises. The conventional group used a paper book of exercises. The primary outcome measure was the change in Upper Extremity Fugl-Meyer (UEFM) score from baseline to follow-up. Secondary measures included the Modified Ashworth Scale for spasticity (MAS) and the Visual Analog Pain (VAP) scale. RESULTS Participants who used FitMi improved by an average of 8.0 ± 4.6 points on the UEFM scale compared to 3.0 ± 6.1 points for the conventional participants, a significant difference (t-test, P = .029). FitMi participants exhibited no significant changes in UE MAS or VAP scores. CONCLUSIONS A sensor-based exercise system incorporating a suite of recommended design features significantly and safely reduced UE impairment compared to a paper-based, home exercise program. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03503617.
Collapse
Affiliation(s)
- Veronica A. Swanson
- Department of Mechanical and Aerospace
Engineering, Henry Samueli School of Engineering, University of California, Irvine,
Irvine, CA, USA,Veronica A. Swanson, University of
California, Irvine, 3225 Engineering Gateway, Irvine, CA 92697-3975, USA.
| | - Christopher Johnson
- Department of Biomedical Engineering,
Henry Samueli School of Engineering, University of California, Irvine, Irvine, CA,
USA
| | | | - Nicole Bayus
- Rancho Research Institute, Rancho Los
Amigos National Rehabilitation Hospital, Downey, USA
| | - Phylicia McCoy
- Arthur J. Bond Department of Mechanical
Engineering, Alabama A&M University, Huntsville, AL, USA
| | - Yat Fung Joshua Ng
- School of Social Sciences, University
of California, Irvine, Irvine, CA, USA
| | - Jenna Schindele, BS
- Mathematics and Statistics, University
of California, Los Angeles, Los Angeles, CA, USA
| | - David J. Reinkensmeyer
- Department of Mechanical and Aerospace
Engineering, Henry Samueli School of Engineering, University of California, Irvine,
Irvine, CA, USA,Department of Anatomy and Neurobiology,
UC Irvine School of Medicine, University of California, Irvine, Irvine, CA,
USA
| | - Susan Shaw
- Department of Neurology, Rancho Los
Amigos National Rehabilitation Center, Downey, CA, USA
| |
Collapse
|
3
|
Sanjuan De Caro JD, Sunny MSH, Muñoz E, Hernandez J, Torres A, Brahmi B, Wang I, Ghommam J, Rahman MH. Evaluation of Objective Functions for the Optimal Design of an Assistive Robot. MICROMACHINES 2022; 13:2206. [PMID: 36557505 PMCID: PMC9788593 DOI: 10.3390/mi13122206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/26/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The number of individuals with upper or lower extremities dysfunction (ULED) has considerably increased in the past few decades, resulting in a high economic burden for their families and society. Individuals with ULEDs require assistive robots to fulfill all their activities of daily living (ADLs). However, a theory for the optimal design of assistive robots that reduces energy consumption while increasing the workspace is unavailable. Thus, this research presents an algorithm for the optimal link length selection of an assistive robot mounted on a wheelchair to minimize the torque demands of each joint while increasing the workspace coverage. For this purpose, this research developed a workspace to satisfy a list of 18 ADLs. Then, three torque indices from the literature were considered as performance measures to minimize; the three torque measures are the quadratic average torque (QAT), the weighted root square mean (WRMS), and the absolute sum of torques (AST). The proposed algorithm evaluates any of the three torque measures within the workspace, given the robot dimensions. This proposed algorithm acts as an objective function, which is optimized using a genetic algorithm for each torque measure. The results show that all tree torque measures are suitable criteria for assistance robot optimization. However, each torque measures yield different optimal results; in the case of the QAT optimization, it produces the least workspace with the minimum overall torques of all the joints. Contrarily, the WRMS and AST optimization yield similar results generating the maximum workspace coverage but with a greater overall torque of all joints. Thus, the selection between the three methods depends on the designer's criteria. Based on the results, the presented methodology is a reliable tool for the optimal dimensioning of assistive robots.
Collapse
Affiliation(s)
- Javier Dario Sanjuan De Caro
- Department of Mechanical Engineering, University of Wisconsin, Milwaukee, WI 53212, USA
- Department of Mechanical Engineering, Universidad del Norte, Barranquilla 081007, Colombia
| | | | - Elias Muñoz
- Department of Mechanical Engineering, University of Wisconsin, Milwaukee, WI 53212, USA
| | - Jaime Hernandez
- Department of Mechanical Engineering, University of Wisconsin, Milwaukee, WI 53212, USA
| | - Armando Torres
- Department of Mechanical Engineering, University of Wisconsin, Milwaukee, WI 53212, USA
| | - Brahim Brahmi
- Electrical Engineering Department, Collège Ahuntsic, Montreal, QC H2M 1Y8, Canada
| | - Inga Wang
- Department of Rehabilitation Sciences & Technology, University of Wisconsin-Milwaukee, Milwaukee, WI 53212, USA
| | - Jawhar Ghommam
- Electrical and Computer Engineering, Sultan Qaboos University, Muscat 123, Oman
| | - Mohammad H. Rahman
- Department of Mechanical Engineering, University of Wisconsin, Milwaukee, WI 53212, USA
- Computer Science, University of Wisconsin-Milwaukee, Milwaukee, WI 53212, USA
| |
Collapse
|
4
|
Sarigul-Klijn Y, Lobo-Prat J, Smith BW, Thayer S, Zondervan D, Chan V, Stoller O, Reinkensmeyer DJ. There is plenty of room for motor learning at the bottom of the Fugl-Meyer: Acquisition of a novel bimanual wheelchair skill after chronic stroke using an unmasking technology. IEEE Int Conf Rehabil Robot 2017; 2017:50-55. [PMID: 28813792 DOI: 10.1109/icorr.2017.8009220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many people with a stroke have a severely paretic arm, and it is often assumed that they are unable to learn novel, skilled behaviors that incorporate use of that arm. Here, we show that a group of people with chronic stroke (n = 5, upper extremity Fugl-Meyer scores: 31, 30, 26, 22, 8) learned to use their impaired arm to propel a novel, yoked-clutch lever drive wheelchair. Over six daily training sessions, each involving about 134 training movements with their "useless" arm, the users gradually achieved a 3-fold increase in wheelchair speed on average, with a 4-6 fold increase for three of the participants. They did this by learning a bimanual skill: pushing the levers with both arms while activating the yoked-clutches at the right time with their ipsilesional (i.e. "good") hand to propel the wheelchair forward. They perceived the task as highly motivating and useful. The speed improvements exceeded a 1.5-factor improvement observed when young, unimpaired users learned to propel the chair. The learning rate also exceeded a sample of learning rates from a variety of classic learning studies. These results suggest that appropriately-designed assistive technologies (or "unmasking technologies - UTs") can unleash a powerful, latent ability for motor learning even for severely paretic arms. While UTs may not reduce clinical impairment, they may facilitate large improvements in a specific functional ability.
Collapse
|
5
|
Sarigul-Klijn Y, Smith BW, Reinkensmeyer DJ. Design and experimental evaluation of yoked hand-clutching for a lever drive chair. Assist Technol 2017; 30:281-288. [DOI: 10.1080/10400435.2017.1326413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Yasemin Sarigul-Klijn
- Department of Biomedical Engineering, University of California, Irvine, California, USA
| | - Brendan W. Smith
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, California, USA
| | - David J. Reinkensmeyer
- Department of Biomedical Engineering, University of California, Irvine, California, USA
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, California, USA
- Department of Anatomy and Neurobiology, University of California, Irvine, California, USA
| |
Collapse
|
6
|
Rhythmic arm movements are less affected than discrete ones after a stroke. Exp Brain Res 2016; 234:1403-17. [DOI: 10.1007/s00221-015-4543-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
|
7
|
Smith BW, Zondervan DK, Lord TJ, Chan V, Reinkensmeyer DJ. Feasibility of a bimanual, lever-driven wheelchair for people with severe arm impairment after stroke. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:5292-5. [PMID: 25571188 DOI: 10.1109/embc.2014.6944820] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Individuals with severe arm impairment after stroke are thought to be unable to use a manual wheelchair in the conventional bimanual fashion, because they cannot grip and push the pushrim with their impaired hand. Instead, they are often taught to propel a wheelchair with their good arm and leg, a compensatory strategy that encourages disuse and may cause asymmetric tone. Here, we show that four stroke survivors (9, 27 50 and 16 months post stroke) with severe arm impairment (upper extremity Fugl Meyer scores of 21, 17, 16 and 15 of 66 respectively) were able to propel themselves overground during ten, 3.3 meter movement trials, using a specially designed lever-driven wheelchair adapted with a splint and elastic bands. Their average speed on the tenth trial was about 0.1 m/sec. These results suggest that individuals with stroke could use bimanual wheelchair propulsion for mobility, both avoiding the problems associated with good-arm/good-leg propulsion and increasing the number of daily arm movements they achieve, which may improve arm movement recovery.
Collapse
|
8
|
Zondervan DK, Augsburger R, Bodenhoefer B, Friedman N, Reinkensmeyer DJ, Cramer SC. Machine-Based, Self-guided Home Therapy for Individuals With Severe Arm Impairment After Stroke: A Randomized Controlled Trial. Neurorehabil Neural Repair 2014; 29:395-406. [PMID: 25273359 DOI: 10.1177/1545968314550368] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Few therapeutic options exist for the millions of persons living with severe arm impairment after stroke to increase their dose of arm rehabilitation. This study compared self-guided, high-repetition home therapy with a mechanical device (the resonating arm exerciser [RAE]) to conventional therapy in patients with chronic stroke and explored RAE use for patients with subacute stroke. METHODS A total of 16 participants with severe upper-extremity impairment (mean Fugl-Meyer [FM] score = 21.4 ± 8.8 out of 66) >6 months poststroke were randomized to 3 weeks of exercise with the RAE or conventional exercises. The primary outcome measure was FM score 1 month posttherapy. Secondary outcome measures included Motor Activity Log, Visual Analog Pain Scale, and Ashworth Spasticity Scale. After a 1-month break, individuals in the conventional group also received a 3-week course of RAE therapy. RESULTS The change in FM score was significant in both the RAE and conventional groups after training (2.6 ± 1.4 and 3.4 ± 2.4, P = .008 and .016, respectively). These improvements were not significant at 1 month. Exercise with the RAE led to significantly greater improvements in distal FM score than conventional therapy at the 1-month follow-up (P = .02). In a separate cohort of patients with subacute stroke, the RAE was found feasible for exercise. DISCUSSION In those with severe arm impairment after chronic stroke, home-based training with the RAE was feasible and significantly reduced impairment without increasing pain or spasticity. Gains with the RAE were comparable to those found with conventional training and also included distal arm improvement.
Collapse
|