1
|
Ward TW, Springer SD, Schantell M, John JA, Horne LK, Coutant AT, Okelberry HJ, Willett MP, Johnson HJ, Killanin AD, Heinrichs‐Graham E, Wilson TW. Regular cannabis use alters the neural dynamics serving complex motor control. Hum Brain Mapp 2023; 44:6511-6522. [PMID: 37955378 PMCID: PMC10681654 DOI: 10.1002/hbm.26527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/01/2023] [Accepted: 10/08/2023] [Indexed: 11/14/2023] Open
Abstract
Cannabis is the most widely used recreational drug in the United States and regular use has been linked to deficits in attention and memory. However, the effects of regular use on motor control are less understood, with some studies showing deficits and others indicating normal performance. Eighteen users and 23 nonusers performed a motor sequencing task during high-density magnetoencephalography (MEG). The MEG data was transformed into the time-frequency domain and beta responses (16-24 Hz) during motor planning and execution phases were imaged separately using a beamformer approach. Whole-brain maps were examined for group (cannabis user/nonuser) and time window (planning/execution) effects. As expected, there were no group differences in task performance (e.g., reaction time, accuracy, etc.). Regular cannabis users exhibited stronger beta oscillations in the contralateral primary motor cortex compared to nonusers during the execution phase of the motor sequences, but not during the motor planning phase. Similar group-by-time window interactions were observed in the left superior parietal, right inferior frontal cortices, right posterior insular cortex, and the bilateral motor cortex. We observed differences in the neural dynamics serving motor control in regular cannabis users compared to nonusers, suggesting regular users may employ compensatory processing in both primary motor and higher-order motor cortices to maintain adequate task performance. Future studies will need to examine more complex motor control tasks to ascertain whether this putative compensatory activity eventually becomes exhausted and behavioral differences emerge.
Collapse
Affiliation(s)
- Thomas W. Ward
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | - Seth D. Springer
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Mikki Schantell
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Jason A. John
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Lucy K. Horne
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Anna T. Coutant
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Hannah J. Okelberry
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Madelyn P. Willett
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Hallie J. Johnson
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Abraham D. Killanin
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Elizabeth Heinrichs‐Graham
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | - Tony W. Wilson
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
- College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
2
|
Peter J, Ferraioli F, Mathew D, George S, Chan C, Alalade T, Salcedo SA, Saed S, Tatti E, Quartarone A, Ghilardi MF. Movement-related beta ERD and ERS abnormalities in neuropsychiatric disorders. Front Neurosci 2022; 16:1045715. [PMID: 36507340 PMCID: PMC9726921 DOI: 10.3389/fnins.2022.1045715] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Movement-related oscillations in the beta range (from 13 to 30 Hz) have been observed over sensorimotor areas with power decrease (i.e., event-related desynchronization, ERD) during motor planning and execution followed by an increase (i.e., event-related synchronization, ERS) after the movement's end. These phenomena occur during active, passive, imaged, and observed movements. Several electrophysiology studies have used beta ERD and ERS as functional indices of sensorimotor integrity, primarily in diseases affecting the motor system. Recent literature also highlights other characteristics of beta ERD and ERS, implying their role in processes not strictly related to motor function. Here we review studies about movement-related ERD and ERS in diseases characterized by motor dysfunction, including Parkinson's disease, dystonia, stroke, amyotrophic lateral sclerosis, cerebral palsy, and multiple sclerosis. We also review changes of beta ERD and ERS reported in physiological aging, Alzheimer's disease, and schizophrenia, three conditions without overt motor symptoms. The review of these works shows that ERD and ERS abnormalities are present across the spectrum of the examined pathologies as well as development and aging. They further suggest that cognition and movement are tightly related processes that may share common mechanisms regulated by beta modulation. Future studies with a multimodal approach are warranted to understand not only the specific topographical dynamics of movement-related beta modulation but also the general meaning of beta frequency changes occurring in relation to movement and cognitive processes at large. Such an approach will provide the foundation to devise and implement novel therapeutic approaches to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jaime Peter
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Francesca Ferraioli
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Dave Mathew
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Shaina George
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Cameron Chan
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Tomisin Alalade
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Sheilla A. Salcedo
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Shannon Saed
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Elisa Tatti
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States,*Correspondence: Elisa Tatti,
| | - Angelo Quartarone
- IRCCS Centro Neurolesi Bonino Pulejo-Piemonte, Messina, Italy,Angelo Quartarone,
| | - M. Felice Ghilardi
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States,M. Felice Ghilardi,
| |
Collapse
|
3
|
De Nil L, Isabella S, Jobst C, Kwon S, Mollaei F, Cheyne D. Complexity-Dependent Modulations of Beta Oscillations for Verbal and Nonverbal Movements. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:2248-2260. [PMID: 33900804 DOI: 10.1044/2021_jslhr-20-00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Purpose The planning and execution of motor behaviors require coordination of neurons that are established through synchronization of neural activity. Movements are typically preceded by event-related desynchronization (ERD) in the beta range (15-30 Hz) primarily localized in the motor cortex, while movement onset is associated with event-related synchronization (ERS). It is hypothesized that ERD is important for movement preparation and execution, and ERS serves to inhibit movement and update the motor plan. The primary objective of this study was to determine to what extent movement-related oscillatory brain patterns (ERD and ERS) during verbal and nonverbal tasks may be affected differentially by variations in task complexity. Method Seventeen right-handed adult participants (nine women, eight men; M age = 25.8 years, SD = 5.13) completed a sequential button press and verbal task. The final analyses included data for 15 participants for the nonverbal task and 13 for the verbal task. Both tasks consisted of two complexity levels: simple and complex sequences. Magnetoencephalography was used to record modulations in beta band brain oscillations during task performance. Results Both the verbal and button press tasks were characterized by significant premovement ERD and postmovement ERS. However, only simple sequences showed a distinct transient synchronization during the premovement phase of the task. Differences between the two tasks were reflected in both latency and peak amplitude of ERD and ERS, as well as in lateralization of oscillations. Conclusions Both verbal and nonverbal movements showed a significant desynchronization of beta oscillations during the movement preparation and holding phase and a resynchronization upon movement termination. Importantly, the premovement phase for simple but not complex tasks was characterized by a transient partial synchronization. In addition, the data revealed significant differences between the two tasks in terms of lateralization of oscillatory modulations. Our findings suggest that, while data from the general motor control research can inform our understanding of speech motor control, significant differences exist between the two motor systems that caution against overgeneralization of underlying neural control processes.
Collapse
Affiliation(s)
- Luc De Nil
- Department of Speech-Language Pathology, University of Toronto, Ontario, Canada
- Rehabilitation Sciences Institute, University of Toronto, Ontario, Canada
| | - Silvia Isabella
- Department of Speech-Language Pathology, University of Toronto, Ontario, Canada
- The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Cecilia Jobst
- The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Soonji Kwon
- The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Fatemeh Mollaei
- Department of Speech-Language Pathology, University of Toronto, Ontario, Canada
- The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Douglas Cheyne
- Department of Speech-Language Pathology, University of Toronto, Ontario, Canada
- The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Vidaurre C, Haufe S, Jorajuría T, Müller KR, Nikulin VV. Sensorimotor Functional Connectivity: A Neurophysiological Factor Related to BCI Performance. Front Neurosci 2021; 14:575081. [PMID: 33390877 PMCID: PMC7775663 DOI: 10.3389/fnins.2020.575081] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/16/2020] [Indexed: 12/29/2022] Open
Abstract
Brain-Computer Interfaces (BCIs) are systems that allow users to control devices using brain activity alone. However, the ability of participants to command BCIs varies from subject to subject. About 20% of potential users of sensorimotor BCIs do not gain reliable control of the system. The inefficiency to decode user's intentions requires the identification of neurophysiological factors determining “good” and “poor” BCI performers. One of the important neurophysiological aspects in BCI research is that the neuronal oscillations, used to control these systems, show a rich repertoire of spatial sensorimotor interactions. Considering this, we hypothesized that neuronal connectivity in sensorimotor areas would define BCI performance. Analyses for this study were performed on a large dataset of 80 inexperienced participants. They took part in a calibration and an online feedback session recorded on the same day. Undirected functional connectivity was computed over sensorimotor areas by means of the imaginary part of coherency. The results show that post- as well as pre-stimulus connectivity in the calibration recording is significantly correlated to online feedback performance in μ and feedback frequency bands. Importantly, the significance of the correlation between connectivity and BCI feedback accuracy was not due to the signal-to-noise ratio of the oscillations in the corresponding post and pre-stimulus intervals. Thus, this study demonstrates that BCI performance is not only dependent on the amplitude of sensorimotor oscillations as shown previously, but that it also relates to sensorimotor connectivity measured during the preceding training session. The presence of such connectivity between motor and somatosensory systems is likely to facilitate motor imagery, which in turn is associated with the generation of a more pronounced modulation of sensorimotor oscillations (manifested in ERD/ERS) required for the adequate BCI performance. We also discuss strategies for the up-regulation of such connectivity in order to enhance BCI performance.
Collapse
Affiliation(s)
- Carmen Vidaurre
- Department of Statistics, Computer Science and Mathematics, Public University of Navarre, Pamplona, Spain
| | - Stefan Haufe
- Berlin Center for Advanced Neuroimaging, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Tania Jorajuría
- Department of Statistics, Computer Science and Mathematics, Public University of Navarre, Pamplona, Spain
| | - Klaus-Robert Müller
- Department of Machine Learning, Berlin University of Technology, Berlin, Germany.,Department of Artificial Intelligence, Korea University, Seoul, South Korea.,Max Planck Institute for Informatics, Saarbrücken, Germany.,Google Research, Brain Team, Berlin, Germany
| | - Vadim V Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
5
|
Tatti E, Ricci S, Nelson AB, Mathew D, Chen H, Quartarone A, Cirelli C, Tononi G, Ghilardi MF. Prior Practice Affects Movement-Related Beta Modulation and Quiet Wake Restores It to Baseline. Front Syst Neurosci 2020; 14:61. [PMID: 33013332 PMCID: PMC7462015 DOI: 10.3389/fnsys.2020.00061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/24/2020] [Indexed: 12/30/2022] Open
Abstract
Beta oscillations (13.5−25 Hz) over the sensorimotor areas are characterized by a power decrease during movement execution (event-related desynchronization, ERD) and a sharp rebound after the movement end (event-related synchronization, ERS). In previous studies, we demonstrated that movement-related beta modulation depth (peak ERS-ERD) during reaching increases within 1-h practice. This increase may represent plasticity processes within the sensorimotor network. If so, beta modulation during a reaching test should be affected by previous learning activity that engages the sensorimotor system but not by learning involving other systems. We thus recorded high-density EEG activity in a group of healthy subjects performing three 45-min blocks of motor adaptation task to a visually rotated display (ROT) and in another performing three blocks of visual sequence-learning (VSEQ). Each block of either ROT or VSEQ was followed by a simple reaching test (mov) without rotation. We found that beta modulation depth increased with practice across mov tests. However, such an increase was greater in the group performing ROT over both the left and frontal areas previously involved in ROT. Importantly, beta modulation values returned to baseline values after a 90-min of either nap or quiet wake. These results show that previous practice leaves a trace in movement-related beta modulation and therefore such increases are cumulative. Furthermore, as sleep is not necessary to bring beta modulation values to baseline, they could reflect local increases of neuronal activity and decrease of energy and supplies.
Collapse
Affiliation(s)
- Elisa Tatti
- CUNY School of Medicine, The City University of New York, New York, NY, United States
| | - Serena Ricci
- CUNY School of Medicine, The City University of New York, New York, NY, United States
| | - Aaron B Nelson
- CUNY School of Medicine, The City University of New York, New York, NY, United States
| | - Dave Mathew
- CUNY School of Medicine, The City University of New York, New York, NY, United States
| | - Henry Chen
- CUNY School of Medicine, The City University of New York, New York, NY, United States
| | - Angelo Quartarone
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - Maria Felice Ghilardi
- CUNY School of Medicine, The City University of New York, New York, NY, United States
| |
Collapse
|