1
|
Kleeren L, Mailleux L, McLean B, Elliott C, Dequeker G, Van Campenhout A, de Xivry JJO, Verheyden G, Ortibus E, Klingels K, Feys H. Does somatosensory discrimination therapy alter sensorimotor upper limb function differently compared to motor therapy in children and adolescents with unilateral cerebral palsy: study protocol for a randomized controlled trial. Trials 2024; 25:147. [PMID: 38409060 PMCID: PMC10895830 DOI: 10.1186/s13063-024-07967-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Besides motor impairments, up to 90% of the children and adolescents with unilateral cerebral palsy (uCP) present with somatosensory impairments in the upper limb. As somatosensory information is of utmost importance for coordinated movements and motor learning, somatosensory impairments can further compromise the effective use of the impaired upper limb in daily life activities. Yet, intervention approaches specifically designated to target these somatosensory impairments are insufficiently investigated in children and adolescents with uCP. Therefore, the aim of this randomized controlled trial (RCT) is to compare the effectiveness of somatosensory discrimination therapy and dose-matched motor therapy to improve sensorimotor upper limb function in children and adolescents with uCP, who experience somatosensory impairments in the upper limb. We will further explore potential behavioral and neurological predictors of therapy response. METHODS A parallel group, evaluator-blinded, phase-II, single-center RCT will be conducted for which 50 children and adolescents with uCP, aged 7 to 15 years, will be recruited. Participants will be randomized to receive 3 weekly sessions of 45 minutes of either somatosensory discrimination therapy or upper limb motor therapy for a period of 8 weeks. Stratification will be performed based on age, manual ability, and severity of tactile impairment at baseline. Sensorimotor upper limb function will be evaluated at baseline, immediately after the intervention and after 6 months follow-up. The primary outcome measure will be bimanual performance as measured with the Assisting Hand Assessment. Secondary outcomes include a comprehensive test battery to objectify somatosensory function and measures of bimanual coordination, unimanual motor function, and goal attainment. Brain imaging will be performed at baseline to investigate structural brain lesion characteristics and structural connectivity of the white matter tracts. DISCUSSION This protocol describes the design of an RCT comparing the effectiveness of somatosensory discrimination therapy and dose-matched motor therapy to improve sensorimotor upper limb function in children and adolescents with uCP. The results of this study may aid in the selection of the most effective upper limb therapy, specifically for children and adolescents with tactile impairments. TRIAL REGISTRATION ClinicalTrials.gov (NCT06006065). Registered on August 8, 2023.
Collapse
Affiliation(s)
- Lize Kleeren
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, Leuven, B-3001, Belgium.
- KU Leuven, Child and Youth Institute, Leuven, B-3000, Belgium.
- Hasselt University, Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Diepenbeek, B-3590, Belgium.
| | - Lisa Mailleux
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, Leuven, B-3001, Belgium
- KU Leuven, Child and Youth Institute, Leuven, B-3000, Belgium
| | - Belinda McLean
- Curtin School of Allied Health, Faculty of Health Sciences, Curtin University, Perth, Australia
- Kids Rehab WA, Telethon Kids Institute, Perth, Australia
| | - Catherine Elliott
- Curtin School of Allied Health, Faculty of Health Sciences, Curtin University, Perth, Australia
- Kids Rehab WA, Telethon Kids Institute, Perth, Australia
| | - Griet Dequeker
- University Hospitals Leuven, Cerebral Palsy Reference Centre, Leuven, B-3000, Belgium
| | - Anja Van Campenhout
- KU Leuven, Child and Youth Institute, Leuven, B-3000, Belgium
- University Hospitals Leuven, Cerebral Palsy Reference Centre, Leuven, B-3000, Belgium
- KU Leuven, Department of Development and Regeneration, Leuven, B-3000, Belgium
| | - Jean-Jacques Orban de Xivry
- KU Leuven, Leuven Brain Institute, Leuven, B-3000, Belgium
- KU Leuven, Department of Movement Sciences, Research Group of Motor Control and Neuroplasticity, Leuven, B-3000, Belgium
| | - Geert Verheyden
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, Leuven, B-3001, Belgium
| | - Els Ortibus
- KU Leuven, Child and Youth Institute, Leuven, B-3000, Belgium
- University Hospitals Leuven, Cerebral Palsy Reference Centre, Leuven, B-3000, Belgium
- KU Leuven, Department of Development and Regeneration, Leuven, B-3000, Belgium
| | - Katrijn Klingels
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, Leuven, B-3001, Belgium
- Hasselt University, Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Diepenbeek, B-3590, Belgium
| | - Hilde Feys
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, Leuven, B-3001, Belgium
- KU Leuven, Child and Youth Institute, Leuven, B-3000, Belgium
| |
Collapse
|
2
|
Astarita D, Pan J, Amato L, Ferrara P, Baldoni A, Dell'Agnello F, Crea S, Vitiello N, Trigili E. MITEx: A Portable Hand Exoskeleton for Assessment and Treatment in Neurological Rehabilitation. IEEE Int Conf Rehabil Robot 2023; 2023:1-6. [PMID: 37941285 DOI: 10.1109/icorr58425.2023.10304721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
This work describes the design and preliminary characterization of a novel portable hand exoskeleton for poststroke rehabilitation. The platform actively mobilizes the index-metacarpophalangeal (I-MCP) joint, and it additionally offers individual rigid support to distal degrees of freedom (DoFs) of the index and thumb. The test-bench characterization proves the capability of the device to render torques at the I-MCP level with high fidelity within frequencies of interest for the application (up to 3 Hz). The introduction of a feed-forward friction compensation at the actuator level lowers the output mechanical stiffness by 32%, contributing to a highly transparent behavior; moreover, the functionality of the platform in rendering different interaction strategies (patient/robot-in-charge) is tested with three healthy subjects, showing the potential of the device to provide assistance as needed.
Collapse
|
3
|
Zbytniewska-Mégret M, Decraene L, Mailleux L, Kleeren L, Kanzler CM, Gassert R, Ortibus E, Feys H, Lambercy O, Klingels K. Reliable and Valid Robotic Assessments of Hand Active and Passive Position Sense in Children With Unilateral Cerebral Palsy. Front Hum Neurosci 2022; 16:895080. [PMID: 35978982 PMCID: PMC9376476 DOI: 10.3389/fnhum.2022.895080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Impaired hand proprioception can lead to difficulties in performing fine motor tasks, thereby affecting activities of daily living. The majority of children with unilateral cerebral palsy (uCP) experience proprioceptive deficits, but accurately quantifying these deficits is challenging due to the lack of sensitive measurement methods. Robot-assisted assessments provide a promising alternative, however, there is a need for solutions that specifically target children and their needs. We propose two novel robotics-based assessments to sensitively evaluate active and passive position sense of the index finger metacarpophalangeal joint in children. We then investigate test-retest reliability and discriminant validity of these assessments in uCP and typically developing children (TDC), and further use the robotic platform to gain first insights into fundamentals of hand proprioception. Both robotic assessments were performed in two sessions with 1-h break in between. In the passive position sense assessment, participant's finger is passively moved by the robot to a randomly selected position, and she/he needs to indicate the perceived finger position on a tablet screen located directly above the hand, so that the vision of the hand is blocked. Active position sense is assessed by asking participants to accurately move their finger to a target position shown on the tablet screen, without visual feedback of the finger position. Ten children with uCP and 10 age-matched TDC were recruited in this study. Test-retest reliability in both populations was good (intraclass correlation coefficients (ICC) >0.79). Proprioceptive error was larger for children with uCP than TDC (passive: 11.49° ± 5.57° vs. 7.46° ± 4.43°, p = 0.046; active: 10.17° ± 5.62° vs. 5.34° ± 2.03°, p < 0.001), indicating discriminant validity. The active position sense was more accurate than passive, and the scores were not correlated, underlining the need for targeted assessments to comprehensively evaluate proprioception. There was a significant effect of age on passive position sense in TDC but not uCP, possibly linked to disturbed development of proprioceptive acuity in uCP. Overall, the proposed robot-assisted assessments are reliable, valid and a promising alternative to commonly used clinical methods, which could help gain a better understanding of proprioceptive impairments in uCP, facilitating the design of novel therapies.
Collapse
Affiliation(s)
- Monika Zbytniewska-Mégret
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- *Correspondence: Monika Zbytniewska-Mégret
| | - Lisa Decraene
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Faculty of Rehabilitation Sciences, Rehabilitation Research Center (REVAL), University of Hasselt, Diepenbeek, Belgium
| | - Lisa Mailleux
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Lize Kleeren
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Christoph M. Kanzler
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| | - Roger Gassert
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| | - Els Ortibus
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Hilde Feys
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Olivier Lambercy
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| | - Katrijn Klingels
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Faculty of Rehabilitation Sciences, Rehabilitation Research Center (REVAL), University of Hasselt, Diepenbeek, Belgium
| |
Collapse
|
4
|
Zbytniewska-Megret M, Salzmann C, Ranzani R, Kanzler CM, Gassert R, Liepert J, Lambercy O. Design and Preliminary Evaluation of a Robot-assisted Assessment-driven Finger Proprioception Therapy. IEEE Int Conf Rehabil Robot 2022; 2022:1-6. [PMID: 36176119 DOI: 10.1109/icorr55369.2022.9896602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Neurological injuries such as stroke often lead to motor and somatosensory impairments of the hand. Deficits in somatosensation, especially proprioception, result in difficulties performing activities of daily living involving fine motor tasks. However, it is challenging to accurately detect those impairments due to the limitations of clinical assessments. Hence therapies rarely focus on proprioception specifically, while such training could promote functional benefits. In this work we propose and preliminarily evaluate a robot-assisted, assessment-driven therapy of finger proprioception. We designed and implemented two therapeutic exercises, one targeting passive and the other active position sense. The difficulty level of the therapy exercises was adapted to each patient's proprioceptive impairment. We evaluated the exercises and their usability with 7 stroke participants and 8 clinicians in a 45-minutes protocol. We found that the exercises were feasible for stroke participants, as 5 individuals progressed in difficulty levels over multiple exercise repetitions, indicating adequacy of the adaptation algorithm. Moreover, usability was rated mostly as satisfactory by the patients (System Usability Scale = 73), and they also found the exercises interesting. Clinicians rated the exercises as difficult but clinically meaningful. Overall, these promising preliminary results pave the way for further development and validation of the proposed therapy approach.
Collapse
|
5
|
Zbytniewska M, Kanzler CM, Jordan L, Salzmann C, Liepert J, Lambercy O, Gassert R. Reliable and valid robot-assisted assessments of hand proprioceptive, motor and sensorimotor impairments after stroke. J Neuroeng Rehabil 2021; 18:115. [PMID: 34271954 PMCID: PMC8283922 DOI: 10.1186/s12984-021-00904-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/24/2021] [Indexed: 11/18/2022] Open
Abstract
Background Neurological injuries such as stroke often differentially impair hand motor and somatosensory function, as well as the interplay between the two, which leads to limitations in performing activities of daily living. However, it is challenging to identify which specific aspects of sensorimotor function are impaired based on conventional clinical assessments that are often insensitive and subjective. In this work we propose and validate a set of robot-assisted assessments aiming at disentangling hand proprioceptive from motor impairments, and capturing their interrelation (sensorimotor impairments). Methods A battery of five complementary assessment tasks was implemented on a one degree-of-freedom end-effector robotic platform acting on the index finger metacarpophalangeal joint. Specifically, proprioceptive impairments were assessed using a position matching paradigm. Fast target reaching, range of motion and maximum fingertip force tasks characterized motor function deficits. Finally, sensorimotor impairments were assessed using a dexterous trajectory following task. Clinical feasibility (duration), reliability (intra-class correlation coefficient ICC, smallest real difference SRD) and validity (Kruskal-Wallis test, Spearman correlations \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\rho$$\end{document}ρ with Fugl-Meyer Upper Limb Motor Assessment, kinesthetic Up-Down Test, Box & Block Test) of robotic tasks were evaluated with 36 sub-acute stroke subjects and 31 age-matched neurologically intact controls. Results Eighty-three percent of stroke survivors with varied impairment severity (mild to severe) could complete all robotic tasks (duration: <15 min per tested hand). Further, the study demonstrated good to excellent reliability of the robotic tasks in the stroke population (ICC>0.7, SRD<30%), as well as discriminant validity, as indicated by significant differences (p-value<0.001) between stroke and control subjects. Concurrent validity was shown through moderate to strong correlations (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\rho$$\end{document}ρ=0.4-0.8) between robotic outcome measures and clinical scales. Finally, robotic tasks targeting different deficits (motor, sensory) were not strongly correlated with each other (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\rho \le$$\end{document}ρ≤0.32, p-value>0.1), thereby presenting complementary information about a patient’s impairment profile. Conclusions The proposed robot-assisted assessments provide a clinically feasible, reliable, and valid approach to distinctly characterize impairments in hand proprioceptive and motor function, along with the interaction between the two. This opens new avenues to help unravel the contributions of unique aspects of sensorimotor function in post-stroke recovery, as well as to contribute to future developments towards personalized, assessment-driven therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s12984-021-00904-5.
Collapse
Affiliation(s)
- Monika Zbytniewska
- Rehabilitation Engineering Laboratory, Institute of Robotics and Intelligent Systems, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | - Christoph M Kanzler
- Rehabilitation Engineering Laboratory, Institute of Robotics and Intelligent Systems, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore, Singapore
| | - Lisa Jordan
- Rehabilitation Engineering Laboratory, Institute of Robotics and Intelligent Systems, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Christian Salzmann
- Kliniken Schmieder Allensbach, Zum Tafelholz 8, 78476, Allensbach, Germany
| | - Joachim Liepert
- Kliniken Schmieder Allensbach, Zum Tafelholz 8, 78476, Allensbach, Germany
| | - Olivier Lambercy
- Rehabilitation Engineering Laboratory, Institute of Robotics and Intelligent Systems, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore, Singapore
| | - Roger Gassert
- Rehabilitation Engineering Laboratory, Institute of Robotics and Intelligent Systems, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore, Singapore
| |
Collapse
|