1
|
Duan Y, Ling J, Feng Z, Ye T, Sun T, Zhu Y. A Survey of Needle Steering Approaches in Minimally Invasive Surgery. Ann Biomed Eng 2024; 52:1492-1517. [PMID: 38530535 DOI: 10.1007/s10439-024-03494-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
In virtue of a curved insertion path inside tissues, needle steering techniques have revealed the potential with the assistance of medical robots and images. The superiority of this technique has been preliminarily verified with several maneuvers: target realignment, obstacle circumvention, and multi-target access. However, the momentum of needle steering approaches in the past decade leads to an open question-"How to choose an applicable needle steering approach for a specific clinical application?" This survey discusses this question in terms of design choices and clinical considerations, respectively. In view of design choices, this survey proposes a hierarchical taxonomy of current needle steering approaches. Needle steering approaches of different manipulations and designs are classified to systematically review the design choices and their influences on clinical treatments. In view of clinical consideration, this survey discusses the steerability and acceptability of the current needle steering approaches. On this basis, the pros and cons of the current needle steering approaches are weighed and their suitable applications are summarized. At last, this survey concluded with an outlook of the needle steering techniques, including the potential clinical applications and future developments in mechanical design.
Collapse
Affiliation(s)
- Yuzhou Duan
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Jie Ling
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Zhao Feng
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
- Wuhan University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Tingting Ye
- Industrial and Systems Engineering Department, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Tairen Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuchuan Zhu
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
2
|
Liu T, Zhang G, Zhang P, Cheng T, Luo Z, Wang S, Du F. Modeling of and Experimenting with Concentric Tube Robots: Considering Clearance, Friction and Torsion. SENSORS (BASEL, SWITZERLAND) 2023; 23:3709. [PMID: 37050768 PMCID: PMC10099042 DOI: 10.3390/s23073709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Concentric tube robots (CTRs) are a promising prospect for minimally invasive surgery due to their inherent compliance and ability to navigate in constrained environments. Existing mechanics-based kinematic models typically neglect friction, clearance, and torsion between each pair of contacting tubes, leading to large positioning errors in medical applications. In this paper, an improved kinematic modeling method is developed. The effect of clearance on tip position during concentric tube assembly is compensated by the database method. The new kinematic model is mechanic-based, and the impact of friction moment and torsion on tubes is considered. Integrating the infinitesimal torsion of the concentric tube robots eliminates the errors caused by the interaction force between the tubes. A prototype is built, and several experiments with kinematic models are designed. The results indicate that the error of tube rotations is less than 2 mm. The maximum error of the feeding experiment does not exceed 0.4 mm. The error of the new modeling method is lower than that of the previous kinematic model. This paper has substantial implications for the high-precision and real-time control of concentric tube robots.
Collapse
Affiliation(s)
- Tianxiang Liu
- School of Mechanical Engineering, Shandong University, Jinan 250061, China
- Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of MOE, Shandong University, Jinan 250061, China
- Engineering Research Center of Intelligent Unmanned System, Ministry of Education, Jinan 250061, China
| | - Gang Zhang
- School of Mechanical Engineering, Shandong University, Jinan 250061, China
- Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of MOE, Shandong University, Jinan 250061, China
- Engineering Research Center of Intelligent Unmanned System, Ministry of Education, Jinan 250061, China
| | - Peng Zhang
- School of Mechanical Engineering, Shandong University, Jinan 250061, China
- Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of MOE, Shandong University, Jinan 250061, China
- Engineering Research Center of Intelligent Unmanned System, Ministry of Education, Jinan 250061, China
| | - Tianyu Cheng
- School of Mechanical Engineering, Shandong University, Jinan 250061, China
- Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of MOE, Shandong University, Jinan 250061, China
- Engineering Research Center of Intelligent Unmanned System, Ministry of Education, Jinan 250061, China
| | - Zijie Luo
- School of Mechanical Engineering, Shandong University, Jinan 250061, China
- Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of MOE, Shandong University, Jinan 250061, China
- Engineering Research Center of Intelligent Unmanned System, Ministry of Education, Jinan 250061, China
| | - Shengsong Wang
- Shandong Center for Food and Drug Evaluation & Inspection, Jinan 250014, China
| | - Fuxin Du
- School of Mechanical Engineering, Shandong University, Jinan 250061, China
- Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of MOE, Shandong University, Jinan 250061, China
- Engineering Research Center of Intelligent Unmanned System, Ministry of Education, Jinan 250061, China
| |
Collapse
|
3
|
Lu M, Zhang Y, Lim CM, Ren H. Flexible Needle Steering with Tethered and Untethered Actuation: Current States, Targeting Errors, Challenges and Opportunities. Ann Biomed Eng 2023; 51:905-924. [PMID: 36943414 DOI: 10.1007/s10439-023-03163-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/05/2023] [Indexed: 03/23/2023]
Abstract
Accurate needle targeting is critical for many clinical procedures, such as transcutaneous biopsy or radiofrequency ablation of tumors. However, targeting errors may arise, limiting the widespread adoption of these procedures. Advances in flexible needle (FN) steering are emerging to mitigate these errors. This review summarizes the state-of-the-art developments of FNs and addresses possible targeting errors that can be overcome with steering actuation techniques. FN steering techniques can be classified as passive and active. Passive steering directly results from the needle-tissue interaction forces, whereas active steering requires additional forces to be applied at the needle tip, which enhances needle steerability. Therefore, the corresponding targeting errors of most passive FNs and active FNs are between 1 and 2 mm, and less than 1 mm, respectively. However, the diameters of active FNs range from 1.42 to 12 mm, which is larger than the passive steering needle varying from 0.5 to 1.4 mm. Therefore, the development of active FNs is an area of active research. These active FNs can be steered using tethered internal direct actuation or untethered external actuation. Examples of tethered internal direct actuation include tendon-driven, longitudinal segment transmission and concentric tube transmission. Tendon-driven FNs have various structures, and longitudinal segment transmission needles could be adapted to reduce tissue damage. Additionally, concentric tube needles have immediate advantages and clinical applications in natural orifice surgery. Magnetic actuation enables active FN steering with untethered external actuation and facilitates miniaturization. The challenges faced in the fabrication, sensing, and actuation methods of FN are analyzed. Finally, bio-inspired FNs may offer solutions to address the challenges faced in FN active steering mechanisms.
Collapse
Affiliation(s)
- Mingyue Lu
- The Key Laboratory of Advanced Manufacturing and Intelligent Technology, Harbin University of Science and Technology, Harbin, China
- Duke-NUS Graduate Medical School, Singapore, Singapore
- The Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Yongde Zhang
- The Key Laboratory of Advanced Manufacturing and Intelligent Technology, Harbin University of Science and Technology, Harbin, China
| | - Chwee Ming Lim
- The Department of Otolaryngology-Head and Neck Surgery, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Hongliang Ren
- The Department of Electronic Engineering and the Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Hong Kong, China.
- The Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Design of a flexible robot toward transbronchial lung biopsy. ROBOTICA 2022. [DOI: 10.1017/s0263574722001345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Transbronchial lung biopsy is an effective and less-invasive treatment for the early diagnosis of lung cancer. However, the limited dexterity of existing endoscopic instruments and the complexity of bronchial access prevent the application of such procedures mainly for biopsy and diagnosis. This paper proposes a flexible robot for transbronchial lung biopsy with a cable-driven mechanism-based flexible manipulator. The robotic system of transbronchial lung biopsy is presented in detail, including the snake-bone end effector, the flexible catheters and the actuation unit. The kinematic analysis of the snake-bone end effector is conducted for the master-slave control. The experimental results show that the end effector reaches the target nodule through a narrow and tortuous pathway in a bronchial model. In conclusion, the proposed robotic system contributes to the field of advanced endoscopic surgery with high flexibility and controllability.
Collapse
|
5
|
Zuo S, Chen T, Chen X, Chen B. A Wearable Hands-Free Human-Robot Interface for Robotized Flexible Endoscope. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3149303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
Girerd C, Morimoto TK. Design and Control of a Hand-Held Concentric Tube Robot for Minimally Invasive Surgery. IEEE T ROBOT 2021. [DOI: 10.1109/tro.2020.3043668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Masaki F, King F, Kato T, Tsukada H, Colson Y, Hata N. Technical validation of multi-section robotic bronchoscope with first person view control for transbronchial biopsies of peripheral lung. IEEE Trans Biomed Eng 2021; 68:3534-3542. [PMID: 33945467 DOI: 10.1109/tbme.2021.3077356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study aims to validate the advantage of the new engineering method to maneuver multi-section robotic bronchoscope with first person view control in transbronchial biopsy. Six physician operators were recruited and tasked to operate a manual and a robotic bronchoscope to the peripheral area placed in patient-derived lung phantoms. The metrics collected were the furthest generation count of the airway the bronchoscope reached, force incurred to the phantoms, and NASA-Task Load Index. The furthest generation count of the airway the physicians reached using the manual and the robotic bronchoscopes were 6.6 +/- 1.2th and 6.7 +/- 0.8th. Robotic bronchoscopes successfully reached the 5th generation count into the peripheral area of the airway, while the manual bronchoscope typically failed earlier in the 3rd generation. More force was incurred to the airway when the manual bronchoscope was used (0.24 +/- 0.20 [N]) than the robotic bronchoscope was applied (0.18 +/- 0.22 [N], p<0.05). The manual bronchoscope imposed more physical demand than the robotic bronchoscope by NASA-TLX score (55 +/- 24 vs 19 +/- 16, p<0.05). These results indicate that a robotic bronchoscope facilitates the advancement of the bronchoscope to the peripheral area with less physical demand to physician operators. The metrics collected in this study would expect to be used as a benchmark for the future development of robotic bronchoscopes.
Collapse
|
8
|
Alfalahi H, Renda F, Stefanini C. Concentric Tube Robots for Minimally Invasive Surgery: Current Applications and Future Opportunities. ACTA ACUST UNITED AC 2020. [DOI: 10.1109/tmrb.2020.3000899] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Dupourqué L, Masaki F, Colson YL, Kato T, Hata N. Transbronchial biopsy catheter enhanced by a multisection continuum robot with follow-the-leader motion. Int J Comput Assist Radiol Surg 2019; 14:2021-2029. [DOI: 10.1007/s11548-019-02017-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 06/12/2019] [Indexed: 10/26/2022]
|
10
|
Amack S, Rox M, Mitchell J, Ertop TE, Emerson M, Kuntz A, Maldonado F, Akulian J, Gafford J, Alterovitz R, Webster RJ. Design and Control of a Compact, Modular Robot for Transbronchial Lung Biopsy. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2019; 10951:109510I. [PMID: 35250147 PMCID: PMC8898049 DOI: 10.1117/12.2513967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Lung cancer is one of the most prevalent and deadly forms of cancer, claiming more than 154,000 lives in the USA per year. Accurate targeting and biopsy of pulmonary abnormalities is key for early diagnosis and successful treatment. Many cancerous lesions originate in the peripheral regions of the lung which are not directly accessible from the bronchial tree, thereby requiring percutaneous approaches to collect biopsies, which carry a higher risk of pneumothorax, hemorrhage, and death in extreme cases. In prior work, our group proposed a concept for accessing the peripheral lung through the airways, via a bronchscope deployed steerable needle. In this paper, we present a more compact, modular, multi-stage robot, designed to deploy a steerable needle through a standard flexible bronchoscope, to retrieve biopsies from lesions in the peripheral regions of the lung. The robot has several stages that can control a steerable biopsy needle, as well as concentric tubes, which act as an aiming conduit. The functionality of this robot is demonstrated via closed-loop lesion targeting in a CT scanner. The steerable needle is controlled using a previously proposed sliding mode controller, based on feedback from a magnetic tracker embedded in the steerable needle's tip. Towards developing a clinically viable platform, this system builds on prior work through its modular, compact form factor, and workflow-conscious design that provides precise homing and the ability to interchange tools as needed.
Collapse
Affiliation(s)
- Stephanie Amack
- Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Margaret Rox
- Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jason Mitchell
- Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Tayfun Efe Ertop
- Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Maxwell Emerson
- Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Alan Kuntz
- Computer Science, University of North Carolina at Chapel Hill, NC, USA
| | - Fabien Maldonado
- Interventional Pulmonology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jason Akulian
- Interventional Pulmonology, University of North Carolina at Chapel Hill, NC, USA
| | - Joshua Gafford
- Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ron Alterovitz
- Computer Science, University of North Carolina at Chapel Hill, NC, USA
| | | |
Collapse
|
11
|
Fu M, Kuntz A, Webster RJ, Alterovitz R. Safe Motion Planning for Steerable Needles Using Cost Maps Automatically Extracted from Pulmonary Images. PROCEEDINGS OF THE ... IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS. IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS 2018; 2018:4942-4949. [PMID: 31105985 PMCID: PMC6519054 DOI: 10.1109/iros.2018.8593407] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Lung cancer is the deadliest form of cancer, and early diagnosis is critical to favorable survival rates. Definitive diagnosis of lung cancer typically requires needle biopsy. Common lung nodule biopsy approaches either carry significant risk or are incapable of accessing large regions of the lung, such as in the periphery. Deploying a steerable needle from a bronchoscope and steering through the lung allows for safe biopsy while improving the accessibility of lung nodules in the lung periphery. In this work, we present a method for extracting a cost map automatically from pulmonary CT images, and utilizing the cost map to efficiently plan safe motions for a steerable needle through the lung. The cost map encodes obstacles that should be avoided, such as the lung pleura, bronchial tubes, and large blood vessels, and additionally formulates a cost for the rest of the lung which corresponds to an approximate likelihood that a blood vessel exists at each location in the anatomy. We then present a motion planning approach that utilizes the cost map to generate paths that minimize accumulated cost while safely reaching a goal location in the lung.
Collapse
Affiliation(s)
- Mengyu Fu
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Alan Kuntz
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Robert J Webster
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Ron Alterovitz
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
12
|
De Falco I, Culmone C, Menciassi A, Dankelman J, van den Dobbelsteen JJ. A variable stiffness mechanism for steerable percutaneous instruments: integration in a needle. Med Biol Eng Comput 2018; 56:2185-2199. [PMID: 29862469 DOI: 10.1007/s11517-018-1847-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 05/16/2018] [Indexed: 12/19/2022]
Abstract
Needles are advanced tools commonly used in minimally invasive medical procedures. The accurate manoeuvrability of flexible needles through soft tissues is strongly determined by variations in tissue stiffness, which affects the needle-tissue interaction and thus causes needle deflection. This work presents a variable stiffness mechanism for percutaneous needles capable of compensating for variations in tissue stiffness and undesirable trajectory changes. It is composed of compliant segments and rigid plates alternately connected in series and longitudinally crossed by four cables. The tensioning of the cables allows the omnidirectional steering of the tip and the stiffness tuning of the needle. The mechanism was tested separately under different working conditions, demonstrating a capability to exert up to 3.6 N. Afterwards, the mechanism was integrated into a needle, and the overall device was tested in gelatine phantoms simulating the stiffness of biological tissues. The needle demonstrated the capability to vary deflection (from 11.6 to 4.4 mm) and adapt to the inhomogeneity of the phantoms (from 21 to 80 kPa) depending on the activation of the variable stiffness mechanism. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Iris De Falco
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.
| | - Costanza Culmone
- Department of BioMechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | | | - Jenny Dankelman
- Department of BioMechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | | |
Collapse
|
13
|
Swaney PJ, Mahoney AW, Hartley BI, Remirez AA, Lamers E, Feins RH, Alterovitz R, Webster RJ. Toward Transoral Peripheral Lung Access: Combining Continuum Robots and Steerable Needles. JOURNAL OF MEDICAL ROBOTICS RESEARCH 2017; 2:1750001. [PMID: 28480335 PMCID: PMC5415307 DOI: 10.1142/s2424905x17500015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lung cancer is the most deadly form of cancer in part because of the challenges associated with accessing nodules for diagnosis and therapy. Transoral access is preferred to percutaneous access since it has a lower risk of lung collapse, yet many sites are currently unreachable transorally due to limitations with current bronchoscopic instruments. Toward this end, we present a new robotic system for image-guided trans-bronchoscopic lung access. The system uses a bronchoscope to navigate in the airway and bronchial tubes to a site near the desired target, a concentric tube robot to move through the bronchial wall and aim at the target, and a bevel-tip steerable needle with magnetic tracking to maneuver through lung tissue to the target under closed-loop control. In this work, we illustrate the workflow of our system and show accurate targeting in phantom experiments. Ex vivo porcine lung experiments show that our steerable needle can be tuned to achieve appreciable curvature in lung tissue. Lastly, we present targeting results with our system using two scenarios based on patient cases. In these experiments, phantoms were created from patient-specific computed tomography information and our system was used to target the locations of suspicious nodules, illustrating the ability of our system to reach sites that are traditionally inaccessible transorally.
Collapse
Affiliation(s)
- Philip J Swaney
- Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Arthur W Mahoney
- Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Bryan I Hartley
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Andria A Remirez
- Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Erik Lamers
- Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Richard H Feins
- Division of Cardiothoracic Surgery, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Ron Alterovitz
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Robert J Webster
- Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
14
|
Gilbert HB, Webster RJ. Rapid, Reliable Shape Setting of Superelastic Nitinol for Prototyping Robots. IEEE Robot Autom Lett 2015; 1:98-105. [PMID: 27648473 PMCID: PMC5026417 DOI: 10.1109/lra.2015.2507706] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Shape setting Nitinol tubes and wires in a typical laboratory setting for use in superelastic robots is challenging. Obtaining samples that remain superelastic and exhibit desired precurvatures currently requires many iterations, which is time consuming and consumes a substantial amount of Nitinol. To provide a more accurate and reliable method of shape setting, in this paper we propose an electrical technique that uses Joule heating to attain the necessary shape setting temperatures. The resulting high power heating prevents unintended aging of the material and yields consistent and accurate results for the rapid creation of prototypes. We present a complete algorithm and system together with an experimental analysis of temperature regulation. We experimentally validate the approach on Nitinol tubes that are shape set into planar curves. We also demonstrate the feasibility of creating general space curves by shape setting a helical tube. The system demonstrates a mean absolute temperature error of 10°C.
Collapse
Affiliation(s)
- Hunter B. Gilbert
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235-1592 USA
| | - Robert J. Webster
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235-1592 USA
| |
Collapse
|
15
|
Kuntz A, Torres LG, Feins RH, Webster RJ, Alterovitz R. Motion Planning for a Three-Stage Multilumen Transoral Lung Access System. PROCEEDINGS OF THE ... IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS. IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS 2015; 2015:3255-3261. [PMID: 26942041 DOI: 10.1109/iros.2015.7353829] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lung cancer is the leading cause of cancer-related death, and early-stage diagnosis is critical to survival. Biopsy is typically required for a definitive diagnosis, but current low-risk clinical options for lung biopsy cannot access all biopsy sites. We introduce a motion planner for a multilumen transoral lung access system, a new system that has the potential to perform safe biopsies anywhere in the lung, which could enable more effective early-stage diagnosis of lung cancer. The system consists of three stages in which a bronchoscope is deployed transorally to the lung, a concentric tube robot pierces through the bronchial tubes into the lung parenchyma, and a steerable needle deploys through a properly oriented concentric tube and steers through the lung parenchyma to the target site while avoiding anatomical obstacles such as significant blood vessels. A sampling-based motion planner computes actions for each stage of the system and considers the coupling of the stages in an efficient manner. We demonstrate the motion planner's fast performance and ability to compute plans with high clearance from obstacles in simulated anatomical scenarios.
Collapse
Affiliation(s)
- Alan Kuntz
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Luis G Torres
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Richard H Feins
- Division of Cardiothoracic Surgery, Department of Surgery, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Robert J Webster
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Ron Alterovitz
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|