1
|
Javed MQ, Kovalchuk I, Yevtushenko D, Yang X, Stanford K. Relationship between Desiccation Tolerance and Biofilm Formation in Shiga Toxin-Producing Escherichia coli. Microorganisms 2024; 12:243. [PMID: 38399647 PMCID: PMC10891874 DOI: 10.3390/microorganisms12020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a major concern in the food industry and requires effective control measures to prevent foodborne illnesses. Previous studies have demonstrated increased difficulty in the control of biofilm-forming STEC. Desiccation, achieved through osmotic stress and water removal, has emerged as a potential antimicrobial hurdle. This study focused on 254 genetically diverse E. coli strains collected from cattle, carcass hides, hide-off carcasses, and processing equipment. Of these, 141 (55.51%) were STEC and 113 (44.48%) were generic E. coli. The biofilm-forming capabilities of these isolates were assessed, and their desiccation tolerance was investigated to understand the relationships between growth temperature, relative humidity (RH), and bacterial survival. Only 28% of the STEC isolates had the ability to form biofilms, compared to 60% of the generic E. coli. Stainless steel surfaces were exposed to different combinations of temperature (0 °C or 35 °C) and relative humidity (75% or 100%), and the bacterial attachment and survival rates were measured over 72 h and compared to controls. The results revealed that all the strains exposed to 75% relative humidity (RH) at any temperature had reduced growth (p < 0.001). In contrast, 35 °C and 100% RH supported bacterial proliferation, except for isolates forming the strongest biofilms. The ability of E. coli to form a biofilm did not impact growth reduction at 75% RH. Therefore, desiccation treatment at 75% RH at temperatures of 0 °C or 35 °C holds promise as a novel antimicrobial hurdle for the removal of biofilm-forming E. coli from challenging-to-clean surfaces and equipment within food processing facilities.
Collapse
Affiliation(s)
- Muhammad Qasim Javed
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (M.Q.J.); (I.K.); (D.Y.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (M.Q.J.); (I.K.); (D.Y.)
| | - Dmytro Yevtushenko
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (M.Q.J.); (I.K.); (D.Y.)
| | - Xianqin Yang
- Agriculture and Agri-Food Canada, Lacombe, AB T4L 1V7, Canada;
| | - Kim Stanford
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (M.Q.J.); (I.K.); (D.Y.)
| |
Collapse
|
2
|
Morse R, Childers C, Nowak E, Rao J, Vlaisavljevich E. Catheter-Based Medical Device Biofilm Ablation Using Histotripsy: A Parameter Study. ULTRASOUND IN MEDICINE & BIOLOGY 2023:S0301-5629(23)00203-X. [PMID: 37394375 DOI: 10.1016/j.ultrasmedbio.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 07/04/2023]
Abstract
OBJECTIVE Biofilm formation in medical catheters is a major source of hospital-acquired infections which can produce increased morbidity and mortality for patients. Histotripsy is a non-invasive, non-thermal focused ultrasound therapy and recently has been found to be effective at removal of biofilm from medical catheters. Previously established histotripsy methods for biofilm removal, however, would require several hours of use to effectively treat a full-length medical catheter. Here, we investigate the potential to increase the speed and efficiency with which biofilms can be ablated from catheters using histotripsy. METHODS Pseudomonas aeruginosa (PA14) biofilms were cultured in in vitro Tygon catheter mimics and treated with histotripsy using a 1 MHz histotripsy transducer and a variety of histotripsy pulsing rates and scanning methods. The improved parameters identified in these studies were then used to explore the bactericidal effect of histotripsy on planktonic PA14 suspended in a catheter mimic. RESULTS Histotripsy can be used to remove biofilm and kill bacteria at substantially increased speeds compared with previously established methods. Near-complete biofilm removal was achieved at treatment speeds up to 1 cm/s, while a 4.241 log reduction in planktonic bacteria was achieved with 2.4 cm/min treatment. CONCLUSION These results represent a 500-fold increase in biofilm removal speeds and a 6.2-fold increase in bacterial killing speeds compared with previously published methods. These findings indicate that histotripsy shows promise for the treatment of catheter-associated biofilms and planktonic bacteria in a clinically relevant time frame.
Collapse
Affiliation(s)
- Ryan Morse
- Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA, USA.
| | | | - Elizabeth Nowak
- Internal Medicine, Division of Infectious Disease, Carilion Medical Center, Roanoke, VA, USA
| | - Jayasimha Rao
- Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA, USA; Internal Medicine, Division of Infectious Disease, Carilion Medical Center, Roanoke, VA, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Roanoke, VA, USA
| |
Collapse
|
3
|
Childers C, Edsall C, Mehochko I, Mustafa W, Durmaz YY, Klibanov AL, Rao J, Vlaisavljevich E. Particle-Mediated Histotripsy for the Targeted Treatment of Intraluminal Biofilms in Catheter-Based Medical Devices. BME FRONTIERS 2022; 2022:9826279. [PMID: 37850182 PMCID: PMC10521694 DOI: 10.34133/2022/9826279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/25/2022] [Indexed: 10/19/2023] Open
Abstract
Objective. This paper is an initial work towards developing particle-mediated histotripsy (PMH) as a novel method of treating catheter-based medical device (CBMD) intraluminal biofilms. Impact Statement. CBMDs commonly become infected with bacterial biofilms leading to medical device failure, infection, and adverse patient outcomes. Introduction. Histotripsy is a noninvasive focused ultrasound ablation method that was recently proposed as a novel method to remove intraluminal biofilms. Here, we explore the potential of combining histotripsy with acoustically active particles to develop a PMH approach that can noninvasively remove biofilms without the need for high acoustic pressures or real-time image guidance for targeting. Methods. Histotripsy cavitation thresholds in catheters containing either gas-filled microbubbles (MBs) or fluid-filled nanocones (NCs) were determined. The ability of these particles to sustain cavitation over multiple ultrasound pulses was tested after a series of histotripsy exposures. Next, the ability of PMH to generate selective intraluminal cavitation without generating extraluminal cavitation was tested. Finally, the biofilm ablation and bactericidal capabilities of PMH were tested using both MBs and NCs. Results. PMH significantly reduced the histotripsy cavitation threshold, allowing for selective luminal cavitation for both MBs and NCs. Results further showed PMH successfully removed intraluminal biofilms in Tygon catheters. Finally, results from bactericidal experiments showed minimal reduction in bacteria viability. Conclusion. The results of this study demonstrate the potential for PMH to provide a new modality for removing bacterial biofilms from CBMDs and suggest that additional work is warranted to develop histotripsy and PMH for treatment of CBMD intraluminal biofilms.
Collapse
Affiliation(s)
| | - Connor Edsall
- Department of Biomedical Engineering and Mechanics, Virginia Tech, USA
| | - Isabelle Mehochko
- Department of Biomedical Engineering and Mechanics, Virginia Tech, USA
| | - Waleed Mustafa
- Department of Biomedical Engineering, Istanbul Medipol University, Turkey
| | | | - Alexander L. Klibanov
- Division of Cardiovascular Medicine (Department of Medicine) and Robert M. Berne Cardiovascular Research Center at University of Virginia School of Medicine, University of Virginia, USA
| | - Jayasimha Rao
- Department of Medicine, Division of Infectious Diseases, Virginia Tech Carilion School of Medicine, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Tech, USA
- ICTAS Center for Engineered Health, Virginia Polytechnic Institute and State University, USA
| |
Collapse
|
4
|
Childers C, Edsall C, Gannon J, Whittington AR, Muelenaer AA, Rao J, Vlaisavljevich E. Focused Ultrasound Biofilm Ablation: Investigation of Histotripsy for the Treatment of Catheter-Associated Urinary Tract Infections (CAUTIs). IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2965-2980. [PMID: 33950839 DOI: 10.1109/tuffc.2021.3077704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Urinary catheters often become contaminated with biofilms, resulting in catheter-associated urinary tract infections (CAUTIs) that adversely affect patient outcomes. Histotripsy is a noninvasive focused ultrasound therapy previously developed for the noninvasive ablation of cancerous tumors and soft tissues. Histotripsy has also previously shown the ability to treat biofilms on glass slides and surgical meshes. Here, we investigate the potential of histotripsy for the treatment of CAUTIs for the first time in vitro. Clinically relevant catheter materials (Tygon, Silicone, and latex catheter mimics) and commonly used clinical catheters were tested to determine the feasibility of producing luminal histotripsy bubble clouds. A Pseudomonas aeruginosa (strain PA14) biofilm model was developed and tested to produce luminal biofilms in an in vitro Tygon catheter mimic. This model was treated with histotripsy to determine the ability to remove a luminal biofilm. Finally, the bactericidal effects of histotripsy were tested by treating PA14 suspended inside the Tygon catheter mimic. Results showed that histotripsy produced precise luminal cavitation within all tested catheter mimics and clinical catheters. Histotripsy treatment of a PA14 biofilm with histotripsy reduced luminal biofilm OD590 signal down to background levels. Further, the treatment of suspended PA14 in Luria-Bertani (LB) showed a 3.45 ± 0.11 log10 reduction in CFU/mL after six histotripsy scans across the catheter mimics. Overall, the results of this study demonstrate the potential of histotripsy to provide a new modality for removing bacterial biofilms from catheter-based medical devices and suggest that additional work is warranted to investigate histotripsy for the treatment of CAUTIs and other biomaterial-associated infections.
Collapse
|
5
|
Liu D, Huang Q, Gu W, Zeng XA. A review of bacterial biofilm control by physical strategies. Crit Rev Food Sci Nutr 2021; 62:3453-3470. [PMID: 33393810 DOI: 10.1080/10408398.2020.1865872] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Biofilms are multicellular communities of microorganisms held together by a self-produced extracellular matrix, which contribute to hygiene problems in the food and medical fields. Both spoilage and pathogenic bacteria that grow in the complex structure of biofilm are more resistant to harsh environmental conditions and conventional antimicrobial agents. Therefore, it is important to develop eco-friendly preventive methodologies to eliminate biofilms from foods and food contact equipment. The present paper gives an overview of the current physical methods for biofilm control and removal. Current physical strategies adopted for the anti-biofilm treatment mainly focused on use of ultrasound power, electric or magnetic field, plasma, and irradiation. Furthermore, the mechanisms of anti-biofilm action and application of different physical methods are discussed. Physical strategies make it possible to combat biofilm without the use of biocidal agents. The remarkable microbiocidal properties of physical strategies are promising tools for antimicrobial applications.
Collapse
Affiliation(s)
- Dan Liu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, PR China
| | - Quanfeng Huang
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, PR China
| | - Weiming Gu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, PR China
| | - Xin-An Zeng
- School of Food Science & Engineering, South China University of Technology, Guangzhou, Guangdong, PR China
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW The aim of this article is to outline the initial development of histotripsy, a noninvasive image-guided focused ultrasound technology that mechanically homogenizes targeted tissues and to describe the results of preclinical translational research directed toward urologic applications. RECENT FINDINGS Histotripsy tissue ablation is based on initiation and control of acoustic cavitation at a target point within the body. This unique mechanical mechanism of action is distinct when compared with conventional thermal ablative modalities. Features of histotripsy (nonthermal, noninvasive, high precision, real-time monitoring/feedback, and tissue liquefaction) have prompted assessment of this technology as a potential ablative therapy for a number of organs and disease processes. SUMMARY Ongoing research efforts to apply histotripsy to preclinical models of benign prostatic hyperplasia, prostate cancer, renal masses, and renal calculi have resulted in enhanced understanding of cavitation bioeffects, refinement of treatment systems, strategies to enhance treatment efficiency, and initiation of a pilot human clinical trial to assess the safety of histotripsy for benign prostatic hyperplasia therapy.
Collapse
|