1
|
Bonnet M, Alluin O, Trimaille T, Gigmes D, Marqueste T, Decherchi P. Delayed Injection of a Physically Cross-Linked PNIPAAm- g-PEG Hydrogel in Rat Contused Spinal Cord Improves Functional Recovery. ACS OMEGA 2020; 5:10247-10259. [PMID: 32426581 PMCID: PMC7226861 DOI: 10.1021/acsomega.9b03611] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Spinal cord injury is a main health issue, leading to multiple functional deficits with major consequences such as motor and sensitive impairment below the lesion. To date, all repair strategies remain ineffective. In line with the experiments showing that implanted hydrogels, immunologically inert biomaterials, from natural or synthetic origins, are promising tools and in order to reduce functional deficits, to increase locomotor recovery, and to reduce spasticity, we injected into the lesion area, 1 week after a severe T10 spinal cord contusion, a thermoresponsive physically cross-linked poly(N-isopropylacrylamide)-poly(ethylene glycol) copolymer hydrogel. The effect of postinjury intensive rehabilitation training was also studied. A group of male Sprague-Dawley rats receiving the hydrogel was enrolled in an 8 week program of physical activity (15 min/day, 5 days/week) in order to verify if the combination of a treadmill step-training and hydrogel could lead to better outcomes. The data obtained were compared to those obtained in animals with a spinal lesion alone receiving a saline injection with or without performing the same program of physical activity. Furthermore, in order to verify the biocompatibility of our designed biomaterial, an inflammatory reaction (interleukin-1β, interleukin-6, and tumor necrosis factor-α) was examined 15 days post-hydrogel injection. Functional recovery (postural and locomotor activities and sensorimotor coordination) was assessed from the day of injection, once a week, for 9 weeks. Finally, 9 weeks postinjection, the spinal reflexivity (rate-dependent depression of the H-reflex) was measured. The results indicate that the hydrogel did not induce an additional inflammation. Furthermore, we observed the same significant locomotor improvements in hydrogel-injected animals as in trained saline-injected animals. However, the combination of hydrogel with exercise did not show higher recovery compared to that evaluated by the two strategies independently. Finally, the H-reflex depression recovery was found to be induced by the hydrogel and, albeit to a lesser degree, exercise. However, no recovery was observed when the two strategies were combined. Our results highlight the effectiveness of our copolymer and its high therapeutic potential to preserve/repair the spinal cord after lesion.
Collapse
Affiliation(s)
- Maxime Bonnet
- Aix
Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement:
Etienne-Jules MAREY, Equipe, Plasticité des Systèmes
Nerveux et Musculaire, (PSNM), Parc Scientifique et Technologique
de Luminy, Faculté des Sciences du Sport de Marseille, CC910—163 Avenue de Luminy, F-13288 Marseille Cedex 09, France
| | - Olivier Alluin
- Aix
Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement:
Etienne-Jules MAREY, Equipe, Plasticité des Systèmes
Nerveux et Musculaire, (PSNM), Parc Scientifique et Technologique
de Luminy, Faculté des Sciences du Sport de Marseille, CC910—163 Avenue de Luminy, F-13288 Marseille Cedex 09, France
| | - Thomas Trimaille
- Aix
Marseille Univ, CNRS, ICR, UMR 7273, Institut de Chimie Radicalaire,
Equipe, Chimie Radicalaire Organique et Polymères de Spécialité,
(CROPS), Case 562—Avenue
Escadrille Normandie-Niemen, F-13397 Marseille Cedex 20, France
| | - Didier Gigmes
- Aix
Marseille Univ, CNRS, ICR, UMR 7273, Institut de Chimie Radicalaire,
Equipe, Chimie Radicalaire Organique et Polymères de Spécialité,
(CROPS), Case 562—Avenue
Escadrille Normandie-Niemen, F-13397 Marseille Cedex 20, France
| | - Tanguy Marqueste
- Aix
Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement:
Etienne-Jules MAREY, Equipe, Plasticité des Systèmes
Nerveux et Musculaire, (PSNM), Parc Scientifique et Technologique
de Luminy, Faculté des Sciences du Sport de Marseille, CC910—163 Avenue de Luminy, F-13288 Marseille Cedex 09, France
| | - Patrick Decherchi
- Aix
Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement:
Etienne-Jules MAREY, Equipe, Plasticité des Systèmes
Nerveux et Musculaire, (PSNM), Parc Scientifique et Technologique
de Luminy, Faculté des Sciences du Sport de Marseille, CC910—163 Avenue de Luminy, F-13288 Marseille Cedex 09, France
| |
Collapse
|
2
|
Kim M, Garrity ST, Steinberg DR, Dodge GR, Mauck RL. Role of dexamethasone in the long-term functional maturation of MSC-laden hyaluronic acid hydrogels for cartilage tissue engineering. J Orthop Res 2018; 36:1717-1727. [PMID: 29178462 PMCID: PMC6948196 DOI: 10.1002/jor.23815] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/23/2017] [Indexed: 02/04/2023]
Abstract
The purpose of study was to investigate the maturation of mesenchymal stem cells (MSC) laden in HA constructs with various combinations of chemically defined medium (CM) components and determine the impact of dexamethasone and serum on construct properties. Constructs were cultured in CM with the addition or withdrawal of media components or were transferred to serum containing media that partially represents an in vivo-like condition where pro-inflammatory signals are present. Constructs cultured in CM+ (CM with TGF-β3) and DEX- (CM+ without dexamethasone) conditions produced robust matrix, while those in ITS/BSA/LA- (CM+ without ITS/BSA/LA) and Serum+ (10% FBS with TGF-β3) produced little matrix. While construct properties in DEX- were greater than those in CM+ at 4 weeks, properties in CM+ and DEX- reversed by 8 weeks. While construct properties in DEX- were greater than those in CM+ at 4 weeks, the continued absence or removal of dexamethasone resulted in marked GAG loss by 8 weeks. Conversely, the continued presence or new addition of dexamethasone at 4 weeks further improved or maintained construct properties through 8 weeks. Finally, when constructs were converted to Serum (in the continued presence of TGF-β3 with or without dexamethasone) after pre-culture in CM+ for 4 weeks, GAG loss was attenuated with addition of dexamethasone. Interestingly, however, collagen content and type was not impacted. In conclusion, dexamethasone influences the functional maturation of MSC-laden HA constructs, and may help to maintain properties during long-term culture or with in vivo translation by repressing pro-inflammatory signals. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1717-1727, 2018.
Collapse
Affiliation(s)
- Minwook Kim
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104,Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, U.S.A
| | - Sean T. Garrity
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - David R. Steinberg
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104,Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, U.S.A
| | - George R. Dodge
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104,Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, U.S.A
| | - Robert L. Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104,Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, U.S.A,Address for Correspondence: Robert L. Mauck, Ph.D., Mary Black Ralston Professor of Orthopaedic Surgery, Professor of Bioengineering, McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 36 Street and Hamilton Walk, Philadelphia, PA 19104, Phone: (215) 898-3294, Fax: (215) 573-2133,
| |
Collapse
|
3
|
Programmed biomolecule delivery to enable and direct cell migration for connective tissue repair. Nat Commun 2017; 8:1780. [PMID: 29176654 PMCID: PMC5701126 DOI: 10.1038/s41467-017-01955-w] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023] Open
Abstract
Dense connective tissue injuries have limited repair, due to the paucity of cells at the wound site. We hypothesize that decreasing the density of the local extracellular matrix (ECM) in conjunction with releasing chemoattractive signals increases cellularity and tissue formation after injury. Using the knee meniscus as a model system, we query interstitial cell migration in the context of migratory barriers using a novel tissue Boyden chamber and show that a gradient of platelet-derived growth factor-AB (PDGF-AB) expedites migration through native tissue. To implement these signals in situ, we develop nanofibrous scaffolds with distinct fiber fractions that sequentially release active collagenase (to increase ECM porosity) and PDGF-AB (to attract endogenous cells) in a localized and coordinated manner. We show that, when placed into a meniscal defect, the controlled release of collagenase and PDGF-AB increases cellularity at the interface and within the scaffold, as well as integration with the surrounding tissue.
Collapse
|
4
|
Zouein FA, Zgheib C, Liechty KW, Booz GW. Post-infarct biomaterials, left ventricular remodeling, and heart failure: is good good enough? ACTA ACUST UNITED AC 2012; 18:284-90. [PMID: 22612796 DOI: 10.1111/j.1751-7133.2012.00298.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fouad A Zouein
- Department of Pharmacology and Toxicology,the Department of Surgery, The Center for Excellence in Cardiovascular-Renal Research, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | | | | | | |
Collapse
|
5
|
Injectable acellular hydrogels for cardiac repair. J Cardiovasc Transl Res 2011; 4:528-42. [PMID: 21710332 DOI: 10.1007/s12265-011-9291-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 06/10/2011] [Indexed: 12/24/2022]
Abstract
Injectable hydrogels are being developed as potential translatable materials to influence the cascade of events that occur after myocardial infarction. These hydrogels, consisting of both synthetic and natural materials, form through numerous chemical crosslinking and assembly mechanisms and can be used as bulking agents or for the delivery of biological molecules. Specifically, a range of materials are being applied that alter the resulting mechanical and biological signals after infarction and have shown success in reducing stresses in the myocardium and limiting the resulting adverse left ventricular (LV) remodeling. Additionally, the delivery of molecules from injectable hydrogels can influence cellular processes such as apoptosis and angiogenesis in cardiac tissue or can be used to recruit stem cells for repair. There is still considerable work to be performed to elucidate the mechanisms of these injectable hydrogels and to optimize their various properties (e.g., mechanics and degradation profiles). Furthermore, although the experimental findings completed to date in small animals are promising, future work needs to focus on the use of large animal models in clinically relevant scenarios. Interest in this therapeutic approach is high due to the potential for developing percutaneous therapies to limit LV remodeling and to prevent the onset of congestive heart failure that occurs with loss of global LV function. This review focuses on recent efforts to develop these injectable and acellular hydrogels to aid in cardiac repair.
Collapse
|