1
|
Lemoine É, Neves Briard J, Rioux B, Gharbi O, Podbielski R, Nauche B, Toffa D, Keezer M, Lesage F, Nguyen DK, Bou Assi E. Computer-assisted analysis of routine EEG to identify hidden biomarkers of epilepsy: A systematic review. Comput Struct Biotechnol J 2024; 24:66-86. [PMID: 38204455 PMCID: PMC10776381 DOI: 10.1016/j.csbj.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024] Open
Abstract
Background Computational analysis of routine electroencephalogram (rEEG) could improve the accuracy of epilepsy diagnosis. We aim to systematically assess the diagnostic performances of computed biomarkers for epilepsy in individuals undergoing rEEG. Methods We searched MEDLINE, EMBASE, EBM reviews, IEEE Explore and the grey literature for studies published between January 1961 and December 2022. We included studies reporting a computational method to diagnose epilepsy based on rEEG without relying on the identification of interictal epileptiform discharges or seizures. Diagnosis of epilepsy as per a treating physician was the reference standard. We assessed the risk of bias using an adapted QUADAS-2 tool. Results We screened 10 166 studies, and 37 were included. The sample size ranged from 8 to 192 (mean=54). The computed biomarkers were based on linear (43%), non-linear (27%), connectivity (38%), and convolutional neural networks (10%) models. The risk of bias was high or unclear in all studies, more commonly from spectrum effect and data leakage. Diagnostic accuracy ranged between 64% and 100%. We observed high methodological heterogeneity, preventing pooling of accuracy measures. Conclusion The current literature provides insufficient evidence to reliably assess the diagnostic yield of computational analysis of rEEG. Significance We provide guidelines regarding patient selection, reference standard, algorithms, and performance validation.
Collapse
Affiliation(s)
- Émile Lemoine
- Department of Neurosciences, University of Montreal, Canada
- Institute of biomedical engineering, Polytechnique Montreal, Canada
- University of Montreal Hospital Center’s Research Center, Canada
| | - Joel Neves Briard
- Department of Neurosciences, University of Montreal, Canada
- University of Montreal Hospital Center’s Research Center, Canada
| | - Bastien Rioux
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Oumayma Gharbi
- Department of Neurosciences, University of Montreal, Canada
- University of Montreal Hospital Center’s Research Center, Canada
| | | | - Bénédicte Nauche
- University of Montreal Hospital Center’s Research Center, Canada
| | - Denahin Toffa
- Department of Neurosciences, University of Montreal, Canada
- University of Montreal Hospital Center’s Research Center, Canada
| | - Mark Keezer
- Department of Neurosciences, University of Montreal, Canada
- School of Public Health, University of Montreal, Canada
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Frédéric Lesage
- Institute of biomedical engineering, Polytechnique Montreal, Canada
| | - Dang K. Nguyen
- Department of Neurosciences, University of Montreal, Canada
- University of Montreal Hospital Center’s Research Center, Canada
| | - Elie Bou Assi
- Department of Neurosciences, University of Montreal, Canada
- University of Montreal Hospital Center’s Research Center, Canada
| |
Collapse
|
2
|
Cao J, Feng Y, Zheng R, Cui X, Zhao W, Jiang T, Gao F. Two-Stream Attention 3-D Deep Network-Based Childhood Epilepsy Syndrome Classification. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 2023; 72:1-12. [DOI: 10.1109/tim.2022.3220287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- Jiuwen Cao
- Machine Learning and I-Health International Cooperation Base of Zhejiang Province, Artificial Intelligence Institute, Hangzhou Dianzi University, Zhejiang, China
| | - Yuanmeng Feng
- Machine Learning and I-Health International Cooperation Base of Zhejiang Province, Artificial Intelligence Institute, Hangzhou Dianzi University, Zhejiang, China
| | - Runze Zheng
- Machine Learning and I-Health International Cooperation Base of Zhejiang Province, Artificial Intelligence Institute, Hangzhou Dianzi University, Zhejiang, China
| | - Xiaonan Cui
- Machine Learning and I-Health International Cooperation Base of Zhejiang Province, Artificial Intelligence Institute, Hangzhou Dianzi University, Zhejiang, China
| | - Weijie Zhao
- Machine Learning and I-Health International Cooperation Base of Zhejiang Province, Artificial Intelligence Institute, Hangzhou Dianzi University, Zhejiang, China
| | - Tiejia Jiang
- Department of Neurology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Feng Gao
- Machine Learning and I-Health International Cooperation Base of Zhejiang Province, Artificial Intelligence Institute, Hangzhou Dianzi University, Zhejiang, China
| |
Collapse
|
3
|
Fujita Y, Yanagisawa T, Fukuma R, Ura N, Oshino S, Kishima H. Abnormal phase-amplitude coupling characterizes the interictal state in epilepsy. J Neural Eng 2022; 19. [PMID: 35385832 DOI: 10.1088/1741-2552/ac64c4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/05/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Diagnosing epilepsy still requires visual interpretation of electroencephalography and magnetoencephalography (MEG) by specialists, which prevents quantification and standardization of diagnosis. Previous studies proposed automated diagnosis by combining various features from electroencephalography and MEG, such as relative power (Power) and functional connectivity. However, the usefulness of interictal phase-amplitude coupling (PAC) in diagnosing epilepsy is still unknown. We hypothesized that resting-state PAC would be different for patients with epilepsy in the interictal state and for healthy participants such that it would improve discrimination between the groups. METHODS We obtained resting-state MEG and magnetic resonance imaging in 90 patients with epilepsy during their preoperative evaluation and in 90 healthy participants. We used the cortical currents estimated from MEG and magnetic resonance imaging to calculate Power in the δ (1-3 Hz), θ (4-7 Hz), α (8-13 Hz), β (13-30 Hz), low γ (35-55 Hz), and high γ (65-90 Hz) bands and functional connectivity in the θ band. PAC was evaluated using the synchronization index (SI) for eight frequency band pairs: the phases of δ, θ, α, and β and the amplitudes of low and high γ. First, we compared the mean SI values for the patients with epilepsy and the healthy participants. Then, using features such as PAC, Power, functional connectivity, and features extracted by deep learning individually or combined, we tested whether PAC improves discrimination accuracy for the two groups. RESULTS The mean SI values were significantly different for the patients with epilepsy and the healthy participants. The SI value difference was highest for θ/low γ in the temporal lobe. Discrimination accuracy was the highest, at 90%, using the combination of PAC and deep learning. SIGNIFICANCE Abnormal PAC characterized the patients with epilepsy in the interictal state compared with the healthy participants, potentially improving the discrimination of epilepsy.
Collapse
Affiliation(s)
- Yuya Fujita
- Institute for Advanced co-creation studies, Osaka University, 2-2 Yamadaoka Suita Osaka Japan, Suita, 565-0871, JAPAN
| | - Takufumi Yanagisawa
- Institute for Advanced co-creation studies, Osaka University, 2-2 Yamadaoka Suita Osaka Japan, Suita, 565-0871, JAPAN
| | - Ryohei Fukuma
- Institute for Advanced co-creation studies, Osaka University, 2-2 Yamadaoka Suita Osaka Japan, Suita, 565-0871, JAPAN
| | - Natsuko Ura
- Institute for Advanced co-creation studies, Osaka University, 2-2 Yamadaoka Suita Osaka Japan, Suita, 565-0871, JAPAN
| | - Satoru Oshino
- Department of Neurosurgery, Osaka University Faculty of Medicine Graduate School of Medicine, 2-2 Yamadaoka, suita, Osaka, Japan, Osaka University Graduate School of Medicine, Dept of Neurosurgery, Osaka, Osaka, 5670871, JAPAN
| | - Haruhiko Kishima
- Department of neurosurgery, Osaka University, 2-2, Yamadaoka, Suita, Suita, Osaka, 5650871, JAPAN
| |
Collapse
|
4
|
Decker BM, Hill CE, Baldassano SN, Khankhanian P. Can antiepileptic efficacy and epilepsy variables be studied from electronic health records? A review of current approaches. Seizure 2021; 85:138-144. [PMID: 33461032 DOI: 10.1016/j.seizure.2020.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022] Open
Abstract
As automated data extraction and natural language processing (NLP) are rapidly evolving, improving healthcare delivery by harnessing large data is garnering great interest. Assessing antiepileptic drug (AED) efficacy and other epilepsy variables pertinent to healthcare delivery remain a critical barrier to improving patient care. In this systematic review, we examined automatic electronic health record (EHR) extraction methodologies pertinent to epilepsy. We also reviewed more generalizable NLP pipelines to extract other critical patient variables. Our review found varying reports of performance measures. Whereas automated data extraction pipelines are a crucial advancement, this review calls attention to standardizing NLP methodology and accuracy reporting for greater generalizability. Moreover, the use of crowdsourcing competitions to spur innovative NLP pipelines would further advance this field.
Collapse
Affiliation(s)
- Barbara M Decker
- Center for Neuroengineering and Therapeutics, Department of Neurology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, United States.
| | - Chloé E Hill
- Department of Neurology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI, 48109, United States
| | - Steven N Baldassano
- Center for Neuroengineering and Therapeutics, Department of Neurology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, United States
| | - Pouya Khankhanian
- Center for Neuroengineering and Therapeutics, Department of Neurology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, United States
| |
Collapse
|
5
|
Pyrzowski J, Siemiński M, Sarnowska A, Jedrzejczak J, Nyka WM. Interval analysis of interictal EEG: pathology of the alpha rhythm in focal epilepsy. Sci Rep 2015; 5:16230. [PMID: 26553287 PMCID: PMC4639771 DOI: 10.1038/srep16230] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/09/2015] [Indexed: 11/26/2022] Open
Abstract
The contemporary use of interictal scalp electroencephalography (EEG) in the context of focal epilepsy workup relies on the visual identification of interictal epileptiform discharges. The high-specificity performance of this marker comes, however, at a cost of only moderate sensitivity. Zero-crossing interval analysis is an alternative to Fourier analysis for the assessment of the rhythmic component of EEG signals. We applied this method to standard EEG recordings of 78 patients divided into 4 subgroups: temporal lobe epilepsy (TLE), frontal lobe epilepsy (FLE), psychogenic nonepileptic seizures (PNES) and nonepileptic patients with headache. Interval-analysis based markers were capable of effectively discriminating patients with epilepsy from those in control subgroups (AUC~0.8) with diagnostic sensitivity potentially exceeding that of visual analysis. The identified putative epilepsy-specific markers were sensitive to the properties of the alpha rhythm and displayed weak or non-significant dependences on the number of antiepileptic drugs (AEDs) taken by the patients. Significant AED-related effects were concentrated in the theta interval range and an associated marker allowed for identification of patients on AED polytherapy (AUC~0.9). Interval analysis may thus, in perspective, increase the diagnostic yield of interictal scalp EEG. Our findings point to the possible existence of alpha rhythm abnormalities in patients with epilepsy.
Collapse
Affiliation(s)
- Jan Pyrzowski
- Department of Adult Neurology, Medical University of Gdansk, Poland
| | | | - Anna Sarnowska
- Department of Neurology and Epileptology, Medical Centre for Postgraduate Education, Warsaw, Poland
| | - Joanna Jedrzejczak
- Department of Neurology and Epileptology, Medical Centre for Postgraduate Education, Warsaw, Poland
| | - Walenty M Nyka
- Department of Adult Neurology, Medical University of Gdansk, Poland
| |
Collapse
|
6
|
Höller Y, Trinka E. What do temporal lobe epilepsy and progressive mild cognitive impairment have in common? Front Syst Neurosci 2014; 8:58. [PMID: 24795575 PMCID: PMC3997046 DOI: 10.3389/fnsys.2014.00058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/25/2014] [Indexed: 12/27/2022] Open
Abstract
Temporal lobe epilepsy (TLE) and mild cognitive impairment (MCI) are both subject to intensive memory research. Memory problems are a core characteristic of both conditions and we wonder if there are analogies which would enrich the two distinct research communities. In this review we focus on memory decline in both conditions, that is, the most feared psychosocial effect. While it is clear that memory decline in MCI is highly likely and would lead to the more severe diagnosis of Alzheimer's disease, it is a debate if TLE is a dementing disease or not. As such, like for MCI, one can differentiate progressive from stable TLE subtypes, mainly depending on the age of onset. Neuroimaging techniques such as volumetric analysis of the hippocampus, entorhinal, and perirhinal cortex show evidence of pathological changes in TLE and are predictive for memory decline in MCI. Several studies emphasize that it is necessary to extend the region of interest—even whole-brain characteristics can be predictive for conversion from MCI to Alzheimer's disease. Electroencephalography is increasingly subject to computational neuroscience, revealing new approaches for analyzing frequency, spatial synchronization, and information content of the signals. These methods together with event-related designs that assess memory functions are highly promising for understanding the mechanisms of memory decline in both TLE and MCI populations. Finally, there is evidence that the potential of such markers for memory decline is far from being exhausted. Similar structural and neurophysiological characteristics are linked to memory decline in TLE and MCI. We raise the hope that interdisciplinary research and cross-talk between fields such as research on epilepsy and dementia, will shed further light on the dementing characteristics of the pathological basis of MCI and TLE and support the development of new memory enhancing treatment strategies.
Collapse
Affiliation(s)
- Yvonne Höller
- Department of Neurology, Christian Doppler Medical Centre and Centre for Cognitive Neuroscience, Paracelsus Medical University Salzburg, Austria
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Medical Centre and Centre for Cognitive Neuroscience, Paracelsus Medical University Salzburg, Austria
| |
Collapse
|
7
|
Kerr WT, Anderson A, Lau EP, Cho AY, Xia H, Bramen J, Douglas PK, Braun ES, Stern JM, Cohen MS. Automated diagnosis of epilepsy using EEG power spectrum. Epilepsia 2012; 53:e189-92. [PMID: 22967005 DOI: 10.1111/j.1528-1167.2012.03653.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interictal electroencephalography (EEG) has clinically meaningful limitations in its sensitivity and specificity in the diagnosis of epilepsy because of its dependence on the occurrence of epileptiform discharges. We have developed a computer-aided diagnostic (CAD) tool that operates on the absolute spectral energy of the routine EEG and has both substantially higher sensitivity and negative predictive value than the identification of interictal epileptiform discharges. Our approach used a multilayer perceptron to classify 156 patients admitted for video-EEG monitoring. The patient population was diagnostically diverse; 87 were diagnosed with either generalized or focal seizures. The remainder of the patients were diagnosed with nonepileptic seizures. The sensitivity was 92% (95% confidence interval [CI] 85-97%) and the negative predictive value was 82% (95% CI 67-92%). We discuss how these findings suggest that this CAD can be used to supplement event-based analysis by trained epileptologists.
Collapse
Affiliation(s)
- Wesley T Kerr
- Medical Scientist Training Program and Department of Biomathematics, University of California at Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, U.S.A.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
PyEEG: an open source Python module for EEG/MEG feature extraction. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2011; 2011:406391. [PMID: 21512582 PMCID: PMC3070217 DOI: 10.1155/2011/406391] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/26/2010] [Accepted: 12/31/2010] [Indexed: 12/04/2022]
Abstract
Computer-aided diagnosis of neural diseases from EEG signals (or other physiological signals that can be treated as time series, e.g., MEG) is an emerging field that has gained much attention in past years. Extracting features is a key component in the analysis of EEG signals. In our previous works, we have implemented many EEG feature extraction functions in the Python programming language. As Python is gaining more ground in scientific computing, an open source Python module for extracting EEG features has the potential to save much time for computational neuroscientists. In this paper, we introduce PyEEG, an open source Python module for EEG feature extraction.
Collapse
|