1
|
Kuntz A, Emerson M, Ertop TE, Fried I, Fu M, Hoelscher J, Rox M, Akulian J, Gillaspie EA, Lee YZ, Maldonado F, Webster RJ, Alterovitz R. Autonomous medical needle steering in vivo. Sci Robot 2023; 8:eadf7614. [PMID: 37729421 PMCID: PMC11182607 DOI: 10.1126/scirobotics.adf7614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
The use of needles to access sites within organs is fundamental to many interventional medical procedures both for diagnosis and treatment. Safely and accurately navigating a needle through living tissue to a target is currently often challenging or infeasible because of the presence of anatomical obstacles, high levels of uncertainty, and natural tissue motion. Medical robots capable of automating needle-based procedures have the potential to overcome these challenges and enable enhanced patient care and safety. However, autonomous navigation of a needle around obstacles to a predefined target in vivo has not been shown. Here, we introduce a medical robot that autonomously navigates a needle through living tissue around anatomical obstacles to a target in vivo. Our system leverages a laser-patterned highly flexible steerable needle capable of maneuvering along curvilinear trajectories. The autonomous robot accounts for anatomical obstacles, uncertainty in tissue/needle interaction, and respiratory motion using replanning, control, and safe insertion time windows. We applied the system to lung biopsy, which is critical for diagnosing lung cancer, the leading cause of cancer-related deaths in the United States. We demonstrated successful performance of our system in multiple in vivo porcine studies achieving targeting errors less than the radius of clinically relevant lung nodules. We also demonstrated that our approach offers greater accuracy compared with a standard manual bronchoscopy technique. Our results show the feasibility and advantage of deploying autonomous steerable needle robots in living tissue and how these systems can extend the current capabilities of physicians to further improve patient care.
Collapse
Affiliation(s)
- Alan Kuntz
- Kahlert School of Computing and Robotics Center, University of Utah; Salt Lake City, UT 84112, USA
| | - Maxwell Emerson
- Department of Mechanical Engineering, Vanderbilt University; Nashville, TN 37235, USA
| | - Tayfun Efe Ertop
- Department of Mechanical Engineering, Vanderbilt University; Nashville, TN 37235, USA
| | - Inbar Fried
- Department of Computer Science, University of North Carolina at Chapel Hill; Chapel Hill, NC 27599, USA
| | - Mengyu Fu
- Department of Computer Science, University of North Carolina at Chapel Hill; Chapel Hill, NC 27599, USA
| | - Janine Hoelscher
- Department of Computer Science, University of North Carolina at Chapel Hill; Chapel Hill, NC 27599, USA
| | - Margaret Rox
- Department of Mechanical Engineering, Vanderbilt University; Nashville, TN 37235, USA
| | - Jason Akulian
- Department of Medicine, Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina School of Medicine; Chapel Hill, NC 27599, USA
| | - Erin A. Gillaspie
- Department of Medicine and Thoracic Surgery, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - Yueh Z. Lee
- Department of Radiology, University of North Carolina School of Medicine; Chapel Hill, NC 27599, USA
| | - Fabien Maldonado
- Department of Medicine and Thoracic Surgery, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - Robert J. Webster
- Department of Mechanical Engineering, Vanderbilt University; Nashville, TN 37235, USA
| | - Ron Alterovitz
- Department of Computer Science, University of North Carolina at Chapel Hill; Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Fried I, Hoelscher J, Fu M, Emerson M, Ertop TE, Rox M, Granna J, Kuntz A, Akulian JA, Webster RJ, Alterovitz R. Design Considerations for a Steerable Needle Robot to Maximize Reachable Lung Volume. IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION : ICRA : [PROCEEDINGS]. IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION 2021; 2021:10.1109/icra48506.2021.9561342. [PMID: 34721939 PMCID: PMC8553157 DOI: 10.1109/icra48506.2021.9561342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Steerable needles that are able to follow curvilinear trajectories and steer around anatomical obstacles are a promising solution for many interventional procedures. In the lung, these needles can be deployed from the tip of a conventional bronchoscope to reach lung lesions for diagnosis. The reach of such a device depends on several design parameters including the bronchoscope diameter, the angle of the piercing device relative to the medial axis of the airway, and the needle's minimum radius of curvature while steering. Assessing the effect of these parameters on the overall system's clinical utility is important in informing future design choices and understanding the capabilities and limitations of the system. In this paper, we analyze the effect of various settings for these three robot parameters on the percentage of the lung that the robot can reach. We combine Monte Carlo random sampling of piercing configurations with a Rapidly-exploring Random Trees based steerable needle motion planner in simulated human lung environments to asymptotically accurately estimate the volume of sites in the lung reachable by the robot. We highlight the importance of each parameter on the overall system's reachable workspace in an effort to motivate future device innovation and highlight design trade-offs.
Collapse
Affiliation(s)
- Inbar Fried
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Janine Hoelscher
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mengyu Fu
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Maxwell Emerson
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Tayfun Efe Ertop
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Margaret Rox
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Josephine Granna
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Alan Kuntz
- School of Computing and the Robotics Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Jason A. Akulian
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27514, USA
| | - Robert J. Webster
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Ron Alterovitz
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Rox M, Emerson M, Ertop TE, Fried I, Fu M, Hoelscher J, Kuntz A, Granna J, Mitchell J, Lester M, Maldonado F, Gillaspie EA, Akulian JA, Alterovitz R, Webster RJ. Decoupling Steerability from Diameter: Helical Dovetail Laser Patterning for Steerable Needles. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2020; 8:181411-181419. [PMID: 35198341 PMCID: PMC8863302 DOI: 10.1109/access.2020.3028374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The maximum curvature of a steerable needle in soft tissue is highly sensitive to needle shaft stiffness, which has motivated use of small diameter needles in the past. However, desired needle payloads constrain minimum shaft diameters, and shearing along the needle shaft can occur at small diameters and high curvatures. We provide a new way to adjust needle shaft stiffness (thereby enhancing maximum curvature, i.e. "steerability") at diameters selected based on needle payload requirements. We propose helical dovetail laser patterning to increase needle steerability without reducing shaft diameter. Experiments in phantoms and ex vivo animal muscle, brain, liver, and inflated lung tissues demonstrate high steerability in soft tissues. These experiments use needle diameters suitable for various clinical scenarios, and which have been previously limited by steering challenges without helical dovetail patterning. We show that steerable needle targeting remains accurate with established controllers and demonstrate interventional payload delivery (brachytherapy seeds and radiofrequency ablation) through the needle. Helical dovetail patterning decouples steerability from diameter in needle design. It enables diameter to be selected based on clinical requirements rather than being carefully tuned to tissue properties. These results pave the way for new sensors and interventional tools to be integrated into high-curvature steerable needles.
Collapse
Affiliation(s)
- Margaret Rox
- Department of Mechanical Engineering and the Vanderbilt Institute for Surgery and Engineering at Vanderbilt University, Nashville, TN 37203, USA
| | - Maxwell Emerson
- Department of Mechanical Engineering and the Vanderbilt Institute for Surgery and Engineering at Vanderbilt University, Nashville, TN 37203, USA
| | - Tayfun Efe Ertop
- Department of Mechanical Engineering and the Vanderbilt Institute for Surgery and Engineering at Vanderbilt University, Nashville, TN 37203, USA
| | - Inbar Fried
- Department of Computer Science at the University of North Carolina at Chapel Hill, NC 27599, USA
| | - Mengyu Fu
- Department of Computer Science at the University of North Carolina at Chapel Hill, NC 27599, USA
| | - Janine Hoelscher
- Department of Computer Science at the University of North Carolina at Chapel Hill, NC 27599, USA
| | - Alan Kuntz
- Robotics Center and the School of Computing at the University of Utah, Salt Lake City, UT 84112, USA
| | - Josephine Granna
- Department of Mechanical Engineering and the Vanderbilt Institute for Surgery and Engineering at Vanderbilt University, Nashville, TN 37203, USA
| | - Jason Mitchell
- Department of Mechanical Engineering and the Vanderbilt Institute for Surgery and Engineering at Vanderbilt University, Nashville, TN 37203, USA
| | - Michael Lester
- Department of Medicine and Thoracic Surgery at the Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Fabien Maldonado
- Department of Medicine and Thoracic Surgery at the Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Erin A Gillaspie
- Department of Medicine and Thoracic Surgery at the Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Jason A Akulian
- Division of Pulmonary Diseases and Critical Care Medicine at the University of North Carolina at Chapel Hill, NC 27599, USA
| | - Ron Alterovitz
- Department of Computer Science at the University of North Carolina at Chapel Hill, NC 27599, USA
| | - Robert J Webster
- Department of Mechanical Engineering and the Vanderbilt Institute for Surgery and Engineering at Vanderbilt University, Nashville, TN 37203, USA
- Department of Medicine and Thoracic Surgery at the Vanderbilt University Medical Center, Nashville, TN 37212, USA
| |
Collapse
|
4
|
Cotler MJ, Rousseau EB, Ramadi KB, Fang J, Graybiel AM, Langer R, Cima MJ. Steerable Microinvasive Probes for Localized Drug Delivery to Deep Tissue. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901459. [PMID: 31183933 DOI: 10.1002/smll.201901459] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Enhanced understanding of neuropathologies has created a need for more advanced tools. Current neural implants result in extensive glial scarring and are not able to highly localize drug delivery due to their size. Smaller implants reduce surgical trauma and improve spatial resolution, but such a reduction requires improvements in device design to enable accurate and chronic implantation in subcortical structures. Flexible needle steering techniques offer improved control over implant placement, but often require complex closed-loop control for accurate implantation. This study reports the development of steerable microinvasive neural implants (S-MINIs) constructed from borosilicate capillaries (OD = 60 µm, ID = 20 µm) that do not require closed-loop guidance or guide tubes. S-MINIs reduce glial scarring 3.5-fold compared to prior implants. Bevel steered needles are utilized for open-loop targeting of deep-brain structures. This study demonstrates a sinusoidal relationship between implant bevel angle and the trajectory radius of curvature both in vitro and ex vivo. This relationship allows for bevel-tipped capillaries to be steered to a target with an average error of 0.23 mm ± 0.19 without closed-loop control. Polished microcapillaries present a new microinvasive tool for chronic, predictable targeting of pathophysiological structures without the need for closed-loop feedback and complex imaging.
Collapse
Affiliation(s)
- Max J Cotler
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Erin B Rousseau
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Khalil B Ramadi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Joshua Fang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Michael J Cima
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| |
Collapse
|
5
|
Needle-tissue interactive mechanism and steering control in image-guided robot-assisted minimally invasive surgery: a review. Med Biol Eng Comput 2018; 56:931-949. [DOI: 10.1007/s11517-018-1825-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/27/2018] [Indexed: 12/19/2022]
|
6
|
Swaney PJ, Mahoney AW, Hartley BI, Remirez AA, Lamers E, Feins RH, Alterovitz R, Webster RJ. Toward Transoral Peripheral Lung Access: Combining Continuum Robots and Steerable Needles. JOURNAL OF MEDICAL ROBOTICS RESEARCH 2017; 2:1750001. [PMID: 28480335 PMCID: PMC5415307 DOI: 10.1142/s2424905x17500015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lung cancer is the most deadly form of cancer in part because of the challenges associated with accessing nodules for diagnosis and therapy. Transoral access is preferred to percutaneous access since it has a lower risk of lung collapse, yet many sites are currently unreachable transorally due to limitations with current bronchoscopic instruments. Toward this end, we present a new robotic system for image-guided trans-bronchoscopic lung access. The system uses a bronchoscope to navigate in the airway and bronchial tubes to a site near the desired target, a concentric tube robot to move through the bronchial wall and aim at the target, and a bevel-tip steerable needle with magnetic tracking to maneuver through lung tissue to the target under closed-loop control. In this work, we illustrate the workflow of our system and show accurate targeting in phantom experiments. Ex vivo porcine lung experiments show that our steerable needle can be tuned to achieve appreciable curvature in lung tissue. Lastly, we present targeting results with our system using two scenarios based on patient cases. In these experiments, phantoms were created from patient-specific computed tomography information and our system was used to target the locations of suspicious nodules, illustrating the ability of our system to reach sites that are traditionally inaccessible transorally.
Collapse
Affiliation(s)
- Philip J Swaney
- Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Arthur W Mahoney
- Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Bryan I Hartley
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Andria A Remirez
- Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Erik Lamers
- Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Richard H Feins
- Division of Cardiothoracic Surgery, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Ron Alterovitz
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Robert J Webster
- Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
7
|
Maria Joseph FO, Hutapea P, Dicker A, Yu Y, Podder T. Closed loop control of a robot assisted smart flexible needle for percutaneous intervention. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:3663-6. [PMID: 26737087 DOI: 10.1109/embc.2015.7319187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This paper presents the experimental evaluation of a coordinated control system for a robot and robot-driven shape memory alloy (SMA) actuated smart flexible needle capable of following a curved path for percutaneous intervention. The robot driving the needle is considered the outer loop and the non-linear SMA actuated flexible needle system comprises the inner loop. The two feedback control loops are coordinated in such a way that the robot drives the needle while monitoring the needle's actual deflection against a preplanned ideal trajectory, so that the needle tip reaches the target location within an acceptable accuracy. In air and in water experimental results are presented to validate the ability of the proposed coordinated controller to track the overall desired trajectory which includes the combined trajectory of the robot driver and the needle.
Collapse
|
8
|
Swaney PJ, Mahoney AW, Remirez AA, Lamers E, Hartley BI, Feins RH, Alterovitz R, Webster RJ. Tendons, Concentric Tubes, and a Bevel Tip: Three Steerable Robots in One Transoral Lung Access System. IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION : ICRA : [PROCEEDINGS]. IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION 2015; 2015:5378-5383. [PMID: 26157600 DOI: 10.1109/icra.2015.7139950] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lung cancer is the most deadly form of cancer, and survival depends on early-stage diagnosis and treatment. Transoral access is preferable to traditional between-the-ribs needle insertion because it is less invasive and reduces risk of lung collapse. Yet many sites in the peripheral zones of the lung or distant from the bronchi cannot currently be accessed transorally, due to the relatively large diameter and lack of sufficient steerablity of current instrumentation. To remedy this, we propose a new robotic system that uses a tendon-actuated device (bronchoscope) as a first stage for deploying a concentric tube robot, which itself is a vehicle through which a bevel steered needle can be introduced into the soft tissue of the lung outside the bronchi. In this paper we present the various components of the system and the workflow we envision for deploying the robot to a target using image guidance. We describe initial validation experiments in which we puncture ex vivo bronchial wall tissue and also target a nodule in a phantom with an average final tip error of 0.72 mm.
Collapse
Affiliation(s)
- Philip J Swaney
- Mechanical Engineering at Vanderbilt University, Nashville, TN 37235, USA
| | - Arthur W Mahoney
- Mechanical Engineering at Vanderbilt University, Nashville, TN 37235, USA
| | - Andria A Remirez
- Mechanical Engineering at Vanderbilt University, Nashville, TN 37235, USA
| | - Erik Lamers
- Mechanical Engineering at Vanderbilt University, Nashville, TN 37235, USA
| | - Bryan I Hartley
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Richard H Feins
- Division of Cardiothoracic Surgery, Department of Surgery, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Ron Alterovitz
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Robert J Webster
- Mechanical Engineering at Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
9
|
Majewicz A, Marra SP, van Vledder MG, Lin M, Choti MA, Song DY, Okamura AM. Behavior of tip-steerable needles in ex vivo and in vivo tissue. IEEE Trans Biomed Eng 2012; 59:2705-15. [PMID: 22711767 DOI: 10.1109/tbme.2012.2204749] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Robotic needle steering is a promising technique to improve the effectiveness of needle-based clinical procedures, such as biopsies and ablation, by computer-controlled, curved insertions of needles within solid organs. In this paper, we explore the capabilities, challenges, and clinical relevance of asymmetric-tip needle steering through experiments in ex vivo and in vivo tissue. We evaluate the repeatability of needle insertion in inhomogeneous biological tissue and compare ex vivo and in vivo needle curvature and insertion forces. Steerable needles curved more in kidney than in liver and prostate, likely due to differences in tissue properties. Pre-bent needles produced higher insertion forces in liver and more curvature in vivo than ex vivo. When compared to straight stainless steel needles, steerable needles did not cause a measurable increase in tissue damage and did not exert more force during insertion. The minimum radius of curvature achieved by prebent needles was 5.23 cm in ex vivo tissue, and 10.4 cm in in vivo tissue. The curvatures achieved by bevel tip needles were negligible for in vivo tissue. The minimum radius of curvature for bevel tip needles in ex vivo tissue was 16.4 cm; however, about half of the bevel tip needles had negligible curvatures. We also demonstrate a potential clinical application of needle steering by targeting and ablating overlapping regions of cadaveric canine liver.
Collapse
Affiliation(s)
- Ann Majewicz
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Ko SY, Frasson L, Rodriguez y Baena F. Closed-Loop Planar Motion Control of a Steerable Probe With a “Programmable Bevel” Inspired by Nature. IEEE T ROBOT 2011. [DOI: 10.1109/tro.2011.2159411] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Frasson L, Ferroni F, Ko SY, Dogangil G, Rodriguez y Baena F. Experimental evaluation of a novel steerable probe with a programmable bevel tip inspired by nature. J Robot Surg 2011; 6:189-97. [DOI: 10.1007/s11701-011-0277-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 05/09/2011] [Indexed: 10/18/2022]
|
12
|
Majewicz A, Wedlick TR, Reed KB, Okamura AM. Evaluation of Robotic Needle Steering in ex vivo Tissue. IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION : ICRA : [PROCEEDINGS]. IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION 2010; 2010:2068-2073. [PMID: 21339851 PMCID: PMC3040792 DOI: 10.1109/robot.2010.5509873] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Insertion velocity, tip asymmetry, and shaft diameter may influence steerable needle insertion paths in soft tissue. In this paper we examine the effects of these variables on needle paths in ex vivo goat liver, and demonstrate practical applications of robotic needle steering for ablation, biopsy, and brachytherapy. All experiments were performed using a new portable needle steering robot that steers asymmetric-tip needles under fluoroscopic imaging. For bevel-tip needles, we found that larger diameter needles resulted in less curvature, i.e. less steerability, confirming previous experiments in artificial tissue. The needles steered with radii of curvature ranging from 3:4 cm (for the most steerable pre-bent needle) to 2:97m (for the least steerable bevel needle). Pre-bend angle significantly affected needle curvature, but bevel angle did not. We hypothesize that biological tissue characteristics such as inhomogeneity and viscoelasticity significantly increase path variability. These results underscore the need for closed-loop image guidance for needle steering in biological tissues with complex internal structure.
Collapse
Affiliation(s)
- Ann Majewicz
- Department of Mechanical Engineering, Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD 21218 USA.
| | - Thomas R. Wedlick
- Department of Mechanical Engineering, Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD 21218 USA.
| | - Kyle B. Reed
- Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620 USA.
| | - Allison M. Okamura
- Department of Mechanical Engineering, Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD 21218 USA.
| |
Collapse
|