1
|
Hu Y, Lin Y, Cheng L, Xu Y, Zhang J, Zheng Z, Wang H, Yan M, Chen H. Hypothesis on the outflow of optic nerve cerebrospinal fluid in spaceflight associated neuro ocular syndrome. NPJ Microgravity 2024; 10:112. [PMID: 39702371 DOI: 10.1038/s41526-024-00449-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 11/15/2024] [Indexed: 12/21/2024] Open
Abstract
Spaceflight-associated neuro-ocular syndrome (SANS) has been well documented in astronauts. However, its pathogenesis is not fully understood. New findings indicate the impaired outflow of the optic nerve cerebrospinal fluid may participate or contribute to some changes in SANS. In this perspective, we generated a hypothesis that the outflow of cerebrospinal fluid through the optic nerve sheath may be impaired under micro-gravity and then may potentially lead to SANS-related alterations.
Collapse
Affiliation(s)
- Yuwei Hu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
- Key laboratory of transfusion adverse reactions, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Yuanxi Lin
- University of Shanghai for Science and Technology, Shanghai, China
| | - Lu Cheng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Xu
- Department of Ophthalmology, The Third People's Hospital of Zhangjiagang, Zhangjiagang, China
| | - Jian Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Zheng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Wang
- Eastern Hospital, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan Province, China
| | - Min Yan
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hui Chen
- University of Shanghai for Science and Technology, Shanghai, China.
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
- University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Panunzi S, D’Orsi L, Iacoviello D, De Gaetano A. A stochastic delay differential model of cerebral autoregulation. PLoS One 2015; 10:e0118456. [PMID: 25830915 PMCID: PMC4382334 DOI: 10.1371/journal.pone.0118456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/16/2015] [Indexed: 01/09/2023] Open
Abstract
Mathematical models of the cardiovascular system and of cerebral autoregulation (CAR) have been employed for several years in order to describe the time course of pressures and flows changes subsequent to postural changes. The assessment of the degree of efficiency of cerebral auto regulation has indeed importance in the prognosis of such conditions as cerebro-vascular accidents or Alzheimer. In the quest for a simple but realistic mathematical description of cardiovascular control, which may be fitted onto non-invasive experimental observations after postural changes, the present work proposes a first version of an empirical Stochastic Delay Differential Equations (SDDEs) model. The model consists of a total of four SDDEs and two ancillary algebraic equations, incorporates four distinct delayed controls from the brain onto different components of the circulation, and is able to accurately capture the time course of mean arterial pressure and cerebral blood flow velocity signals, reproducing observed auto-correlated error around the expected drift.
Collapse
Affiliation(s)
- Simona Panunzi
- Consiglio Nazionale delle Ricerche, Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti”, Rome, Italy
| | - Laura D’Orsi
- Consiglio Nazionale delle Ricerche, Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti”, Rome, Italy
- * E-mail:
| | - Daniela Iacoviello
- Dipartimento di Ingegneria Informatica, Automatica e Gestionale “Antonio Ruberti”, Rome, Italy
| | - Andrea De Gaetano
- Consiglio Nazionale delle Ricerche, Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti”, Rome, Italy
| |
Collapse
|
3
|
Nelson ES, Mulugeta L, Myers JG. Microgravity-induced fluid shift and ophthalmic changes. Life (Basel) 2014; 4:621-65. [PMID: 25387162 PMCID: PMC4284461 DOI: 10.3390/life4040621] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 09/17/2014] [Accepted: 10/17/2014] [Indexed: 11/16/2022] Open
Abstract
Although changes to visual acuity in spaceflight have been observed in some astronauts since the early days of the space program, the impact to the crew was considered minor. Since that time, missions to the International Space Station have extended the typical duration of time spent in microgravity from a few days or weeks to many months. This has been accompanied by the emergence of a variety of ophthalmic pathologies in a significant proportion of long-duration crewmembers, including globe flattening, choroidal folding, optic disc edema, and optic nerve kinking, among others. The clinical findings of affected astronauts are reminiscent of terrestrial pathologies such as idiopathic intracranial hypertension that are characterized by high intracranial pressure. As a result, NASA has placed an emphasis on determining the relevant factors and their interactions that are responsible for detrimental ophthalmic response to space. This article will describe the Visual Impairment and Intracranial Pressure syndrome, link it to key factors in physiological adaptation to the microgravity environment, particularly a cephalad shifting of bodily fluids, and discuss the implications for ocular biomechanics and physiological function in long-duration spaceflight.
Collapse
Affiliation(s)
- Emily S Nelson
- NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, OH 44135, USA.
| | - Lealem Mulugeta
- Universities Space Research Association, Division of Space Life Sciences, 3600 Bay Area Boulevard, Houston, TX 77058, USA.
| | - Jerry G Myers
- NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, OH 44135, USA.
| |
Collapse
|
4
|
Hajjar I, Marmerelis V, Shin DC, Chui H. Assessment of cerebrovascular reactivity during resting state breathing and its correlation with cognitive function in hypertension. Cerebrovasc Dis 2014; 38:10-6. [PMID: 25171390 DOI: 10.1159/000365349] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/17/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Hypertension is associated with cognitive deficits, particularly executive function, and decreased cerebral microvascular responsiveness to CO2 (CO2 vasoreactivity). The relation between CO2 vasoreactivity and executive function is not known. Protocols to assess CO2 vasoreactivity are cumbersome and require inhaling a CO2-enriched gas. We explored the ability to measure CO2 vasoreactivity using end-tidal CO2 fluctuations during normal breathing and the association of this measure with cognitive function in hypertension. METHODS Executive function (Trail-Making Test parts A/B), memory, attention and blood flow velocity (BFV) in the middle cerebral artery using transcranial Doppler were measured in hypertensive subjects who were tapered off their treatment for 3 weeks. BFV was measured while sitting and normally breathing for 5 min, followed by breathing 5% CO2 gas and hyperventilation for 2 min each. We calculated CO2 vasoreactivity as the rate of BFV change from hypoventilation to hyperventilation, and as a model-derived measure using the normal breathing data. The latter was derived using nonlinear principal dynamic modes (PDM), which modelled the dynamic effect of fluctuations in end-tidal CO2 and blood pressure upon BFV during normal room-air respiration. Multiple regression analyses were used to correlate cerebral hemodynamics with cognitive measures. RESULTS Data were collected from 41 individuals with hypertension (mean age 71 years, 24% African Americans, 61% women, off antihypertensive therapy). Lower CO2 vasoreactivity was associated with a worse executive function test score using both calculation methods: p value using the hyper/hypoventilation data was 0.04 and from the PDM analysis was 0.009. PDM calculations showed a stronger correlation with executive function (0.41 vs. 0.21 using the hyper/hypoventilation data). There were no associations with memory or attention measures. There was a weak but statistically significant correlation between the two calculation methods of CO2 vasoreactivity (R(2) = 14%, p = 0.02). CONCLUSION This study suggests that the decrease in CO2 vasoreactivity in hypertension is associated with lower executive function. This may offer new insight into the vascular underpinning of cognitive decline in hypertension. We demonstrate that calculating CO2 vasoreactivity is possible during normal breathing. If replicated in future studies, this may offer a more convenient clinical way to assess CO2 vasoreactivity in hypertension and cognitive disorders.
Collapse
Affiliation(s)
- Ihab Hajjar
- Division of Geriatrics and General Internal Medicine, Department of Medicine, Emory University, Atlanta, Ga., USA
| | | | | | | |
Collapse
|
5
|
Risling M, Davidsson J. Experimental animal models for studies on the mechanisms of blast-induced neurotrauma. Front Neurol 2012; 3:30. [PMID: 22485104 PMCID: PMC3317041 DOI: 10.3389/fneur.2012.00030] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 02/16/2012] [Indexed: 01/29/2023] Open
Abstract
A blast injury is a complex type of physical trauma resulting from the detonation of explosive compounds and has become an important issue due to the use of improvised explosive devices (IED) in current military conflicts. Blast-induced neurotrauma (BINT) is a major concern in contemporary military medicine and includes a variety of injuries that range from mild to lethal. Extreme forces and their complex propagation characterize BINT. Modern body protection and the development of armored military vehicles can be assumed to have changed the outcome of BINT. Primary blast injuries are caused by overpressure waves whereas secondary, tertiary, and quaternary blast injuries can have more varied origins such as the impact of fragments, abnormal movements, or heat. The characteristics of the blast wave can be assumed to be significantly different in open field detonations compared to explosions in a confined space, such an armored vehicle. Important parameters include peak pressure, duration, and shape of the pulse. Reflections from walls and armor can make the prediction of effects in individual cases very complex. Epidemiological data do not contain information of the comparative importance of the different blast mechanisms. It is therefore important to generate data in carefully designed animal models. Such models can be selective reproductions of a primary blast, penetrating injuries from fragments, acceleration movements, or combinations of such mechanisms. It is of crucial importance that the physical parameters of the employed models are well characterized so that the experiments can be reproduced in different laboratory settings. Ideally, pressure recordings should be calibrated by using the same equipment in several laboratories. With carefully designed models and thoroughly evaluated animal data it should be possible to achieve a translation of data between animal and clinical data. Imaging and computer simulation represent a possible link between experiments and studies of human cases. However, in order for mathematical simulations to be completely useful, the predictions will most likely have to be validated by detailed data from animal experiments. Some aspects of BINT can conceivably be studied in vitro. However, factors such as systemic response, brain edema, inflammation, vasospasm, or changes in synaptic transmission and behavior must be evaluated in experimental animals. Against this background, it is necessary that such animal experiments are carefully developed imitations of actual components in the blast injury. This paper describes and discusses examples of different designs of experimental models relevant to BINT.
Collapse
Affiliation(s)
- Mårten Risling
- Department of Neuroscience, Karolinska institutet Stockholm, Sweden
| | | |
Collapse
|