5
|
Lee HW, Arora J, Papademetris X, Tokoglu F, Negishi M, Scheinost D, Farooque P, Blumenfeld H, Spencer DD, Constable RT. Altered functional connectivity in seizure onset zones revealed by fMRI intrinsic connectivity. Neurology 2014; 83:2269-77. [PMID: 25391304 PMCID: PMC4277677 DOI: 10.1212/wnl.0000000000001068] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective: The purpose of this study was to investigate functional connectivity (FC) changes in epileptogenic networks in intractable partial epilepsy obtained from resting-state fMRI by using intrinsic connectivity contrast (ICC), a voxel-based network measure of degree that reflects the number of connections to each voxel. Methods: We measured differences between intrahemispheric- and interhemispheric-ICC (ICCintra−inter) that could reveal localized connectivity abnormalities in epileptogenic zones while more global network changes would be eliminated when subtracting these values. The ICCintra−inter map was compared with the seizure onset zone (SOZ) based on intracranial EEG (icEEG) recordings in 29 patients with at least 1 year of postsurgical follow-up. Two independent reviewers blindly interpreted the icEEG and fMRI data, and the concordance rates were compared for various clinical factors. Results: Concordance between the icEEG SOZ and ICCintra−inter map was observed in 72.4% (21/29) of the patients, which was higher in patients with good surgical outcome, especially in those patients with temporal lobe epilepsy (TLE) or lateral temporal seizure localization. Concordance was also better in the extratemporal lobe epilepsy than the TLE group. In 85.7% (18/21) of the cases, the ICCintra−inter values were negative in the SOZ, indicating decreased FC within the epileptic hemisphere relative to between hemispheres. Conclusions: Assessing alterations in FC using fMRI-ICC map can help localize the SOZ, which has potential as a noninvasive presurgical diagnostic tool to improve surgical outcome. In addition, the method reveals that, in focal epilepsy, both intrahemispheric- and interhemispheric-FC may be altered, in the presence of both regional as well as global network abnormalities.
Collapse
Affiliation(s)
- Hyang Woon Lee
- From the Department of Neurology (H.W.L.), Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, Korea; and Departments of Neurology (H.W.L., P.F., H.B.), Diagnostic Radiology (H.W.L., J.A., X.P., F.T., M.N., R.T.C.), Biomedical Engineering (X.P., D.S., R.T.C.), Neurosurgery (H.B., D.D.S., R.T.C.), and Neurobiology (H.B.), Yale University School of Medicine, New Haven, CT.
| | - Jagriti Arora
- From the Department of Neurology (H.W.L.), Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, Korea; and Departments of Neurology (H.W.L., P.F., H.B.), Diagnostic Radiology (H.W.L., J.A., X.P., F.T., M.N., R.T.C.), Biomedical Engineering (X.P., D.S., R.T.C.), Neurosurgery (H.B., D.D.S., R.T.C.), and Neurobiology (H.B.), Yale University School of Medicine, New Haven, CT
| | - Xenophon Papademetris
- From the Department of Neurology (H.W.L.), Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, Korea; and Departments of Neurology (H.W.L., P.F., H.B.), Diagnostic Radiology (H.W.L., J.A., X.P., F.T., M.N., R.T.C.), Biomedical Engineering (X.P., D.S., R.T.C.), Neurosurgery (H.B., D.D.S., R.T.C.), and Neurobiology (H.B.), Yale University School of Medicine, New Haven, CT
| | - Fuyuze Tokoglu
- From the Department of Neurology (H.W.L.), Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, Korea; and Departments of Neurology (H.W.L., P.F., H.B.), Diagnostic Radiology (H.W.L., J.A., X.P., F.T., M.N., R.T.C.), Biomedical Engineering (X.P., D.S., R.T.C.), Neurosurgery (H.B., D.D.S., R.T.C.), and Neurobiology (H.B.), Yale University School of Medicine, New Haven, CT
| | - Michiro Negishi
- From the Department of Neurology (H.W.L.), Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, Korea; and Departments of Neurology (H.W.L., P.F., H.B.), Diagnostic Radiology (H.W.L., J.A., X.P., F.T., M.N., R.T.C.), Biomedical Engineering (X.P., D.S., R.T.C.), Neurosurgery (H.B., D.D.S., R.T.C.), and Neurobiology (H.B.), Yale University School of Medicine, New Haven, CT
| | - Dustin Scheinost
- From the Department of Neurology (H.W.L.), Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, Korea; and Departments of Neurology (H.W.L., P.F., H.B.), Diagnostic Radiology (H.W.L., J.A., X.P., F.T., M.N., R.T.C.), Biomedical Engineering (X.P., D.S., R.T.C.), Neurosurgery (H.B., D.D.S., R.T.C.), and Neurobiology (H.B.), Yale University School of Medicine, New Haven, CT
| | - Pue Farooque
- From the Department of Neurology (H.W.L.), Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, Korea; and Departments of Neurology (H.W.L., P.F., H.B.), Diagnostic Radiology (H.W.L., J.A., X.P., F.T., M.N., R.T.C.), Biomedical Engineering (X.P., D.S., R.T.C.), Neurosurgery (H.B., D.D.S., R.T.C.), and Neurobiology (H.B.), Yale University School of Medicine, New Haven, CT
| | - Hal Blumenfeld
- From the Department of Neurology (H.W.L.), Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, Korea; and Departments of Neurology (H.W.L., P.F., H.B.), Diagnostic Radiology (H.W.L., J.A., X.P., F.T., M.N., R.T.C.), Biomedical Engineering (X.P., D.S., R.T.C.), Neurosurgery (H.B., D.D.S., R.T.C.), and Neurobiology (H.B.), Yale University School of Medicine, New Haven, CT
| | - Dennis D Spencer
- From the Department of Neurology (H.W.L.), Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, Korea; and Departments of Neurology (H.W.L., P.F., H.B.), Diagnostic Radiology (H.W.L., J.A., X.P., F.T., M.N., R.T.C.), Biomedical Engineering (X.P., D.S., R.T.C.), Neurosurgery (H.B., D.D.S., R.T.C.), and Neurobiology (H.B.), Yale University School of Medicine, New Haven, CT
| | - R Todd Constable
- From the Department of Neurology (H.W.L.), Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, Korea; and Departments of Neurology (H.W.L., P.F., H.B.), Diagnostic Radiology (H.W.L., J.A., X.P., F.T., M.N., R.T.C.), Biomedical Engineering (X.P., D.S., R.T.C.), Neurosurgery (H.B., D.D.S., R.T.C.), and Neurobiology (H.B.), Yale University School of Medicine, New Haven, CT
| |
Collapse
|
6
|
Haneef Z, Chiang S. Clinical correlates of graph theory findings in temporal lobe epilepsy. Seizure 2014; 23:809-18. [PMID: 25127370 DOI: 10.1016/j.seizure.2014.07.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 06/03/2014] [Accepted: 07/14/2014] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Temporal lobe epilepsy (TLE) is considered a brain network disorder, additionally representing the most common form of pharmaco-resistant epilepsy in adults. There is increasing evidence that seizures in TLE arise from abnormal epileptogenic networks, which extend beyond the clinico-radiologically determined epileptogenic zone and may contribute to the failure rate of 30-50% following epilepsy surgery. Graph theory allows for a network-based representation of TLE brain networks using several neuroimaging and electrophysiologic modalities, and has potential to provide clinicians with clinically useful biomarkers for diagnostic and prognostic purposes. METHODS We performed a review of the current state of graph theory findings in TLE as they pertain to localization of the epileptogenic zone, prediction of pre- and post-surgical seizure frequency and cognitive performance, and monitoring cognitive decline in TLE. RESULTS Although different neuroimaging and electrophysiologic modalities have yielded occasionally conflicting results, several potential biomarkers have been characterized for identifying the epileptogenic zone, pre-/post-surgical seizure prediction, and assessing cognitive performance. For localization, graph theory measures of centrality have shown the most potential, including betweenness centrality, outdegree, and graph index complexity, whereas for prediction of seizure frequency, measures of synchronizability have shown the most potential. The utility of clustering coefficient and characteristic path length for assessing cognitive performance in TLE is also discussed. CONCLUSIONS Future studies integrating data from multiple modalities and testing predictive models are needed to clarify findings and develop graph theory for its clinical utility.
Collapse
Affiliation(s)
- Zulfi Haneef
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA; Neurology Care Line, VA Medical Center, Houston, TX, USA.
| | - Sharon Chiang
- Department of Statistics, Rice University, Houston, TX, USA
| |
Collapse
|
7
|
Korzeniewska A, Cervenka MC, Jouny CC, Perilla JR, Harezlak J, Bergey GK, Franaszczuk PJ, Crone NE. Ictal propagation of high frequency activity is recapitulated in interictal recordings: effective connectivity of epileptogenic networks recorded with intracranial EEG. Neuroimage 2014; 101:96-113. [PMID: 25003814 DOI: 10.1016/j.neuroimage.2014.06.078] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/08/2014] [Accepted: 06/30/2014] [Indexed: 01/08/2023] Open
Abstract
Seizures are increasingly understood to arise from epileptogenic networks across which ictal activity is propagated and sustained. In patients undergoing invasive monitoring for epilepsy surgery, high frequency oscillations have been observed within the seizure onset zone during both ictal and interictal intervals. We hypothesized that the patterns by which high frequency activity is propagated would help elucidate epileptogenic networks and thereby identify network nodes relevant for surgical planning. Intracranial EEG recordings were analyzed with a multivariate autoregressive modeling technique (short-time direct directed transfer function--SdDTF), based on the concept of Granger causality, to estimate the directionality and intensity of propagation of high frequency activity (70-175 Hz) during ictal and interictal recordings. These analyses revealed prominent divergence and convergence of high frequency activity propagation at sites identified by epileptologists as part of the ictal onset zone. In contrast, relatively little propagation of this activity was observed among the other analyzed sites. This pattern was observed in both subdural and depth electrode recordings of patients with focal ictal onset, but not in patients with a widely distributed ictal onset. In patients with focal ictal onsets, the patterns of propagation recorded during pre-ictal (up to 5 min immediately preceding ictal onset) and interictal (more than 24h before and after seizures) intervals were very similar to those recorded during seizures. The ability to characterize epileptogenic networks from interictal recordings could have important clinical implications for epilepsy surgery planning by reducing the need for prolonged invasive monitoring to record spontaneous seizures.
Collapse
Affiliation(s)
- A Korzeniewska
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Meyer 2-147, Baltimore, MD 21287, USA.
| | - M C Cervenka
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Meyer 2-147, Baltimore, MD 21287, USA
| | - C C Jouny
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Meyer 2-147, Baltimore, MD 21287, USA
| | - J R Perilla
- Beckman Institute and Department of Physics, University of Illinois Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL 61801, USA
| | - J Harezlak
- Department of Biostatistics, Richard M. Fairbanks School of Public Health and School of Medicine Indiana University, 410 W 10th St., Suite 3000, Indianapolis, IN 46202, USA
| | - G K Bergey
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Meyer 2-147, Baltimore, MD 21287, USA
| | - P J Franaszczuk
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Meyer 2-147, Baltimore, MD 21287, USA; Human Research and Engineering Directorate, US Army Research Laboratory, 459 Mulberry Point Rd, Aberdeen Proving Ground, MD 21005, USA
| | - N E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Meyer 2-147, Baltimore, MD 21287, USA
| |
Collapse
|