1
|
Lee S, Al-antari MA, Joshi GP, Gu YH. Imbalanced Power Spectral Generation for Respiratory Rate and Uncertainty Estimations Based on Photoplethysmography Signal. SENSORS (BASEL, SWITZERLAND) 2025; 25:1437. [PMID: 40096215 PMCID: PMC11902385 DOI: 10.3390/s25051437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Respiratory rate (RR) changes in the elderly can indicate serious diseases. Thus, accurate estimation of RRs for cardiopulmonary function is essential for home health monitoring systems. However, machine learning (ML) algorithm errors embedded in health monitoring systems can be problematic in medical decision-making because some data have much larger sample sizes in the training set than others. This difference in sample size implies biosignal data imbalance. Therefore, we propose a novel methodology that combines bootstrap-based imbalanced continuous power spectral generation (IPSG) with ML approaches to estimate RRs and uncertainty to address data imbalance. The sample differences between normal breathing (12-20 breaths per minute (brpm)), dyspnea (≥20 brpm), and hypopnea (<8 brpm) show significant data imbalance, which can affect the learning of ML algorithms. Hence, the normal breathing part with a large amount of data is well-trained. In contrast, the dyspnea and hypopnea parts with relatively fewer data are not well-trained, and this data imbalance makes it difficult to estimate the reference variables of the actual dyspnea and hypopnea data parts, thus generating significant errors. Hence, we apply ML models by mixing artificial feature curves generated using a bootstrap model with the original feature curves to estimate RRs and solve this problem. As a result, the nonparametric bootstrap approach significantly increases the number of artificial feature curves. The generated artificial feature curves are selectively utilized in the highly imbalanced parts. Therefore, we confirm that IPSG is efficiently trained to predict the complex nonlinear relationship between the feature vectors obtained from the photoplethysmography signal and the reference RR. The proposed methodology shows more accurate prediction performance and uncertainty. Combining the proposed Gaussian process regression (GPR) with IPSG based on the Beth Israel Deaconess Medical Center dataset, the mean absolute error of the RR is 0.79 and 1.47 brpm. Our approach achieves high stability and accuracy by randomly mixing original and artificial feature curves. The proposed GPR-IPSG model can improve the performance of clinical home-based monitoring systems and design a reliable framework.
Collapse
Affiliation(s)
- Soojeong Lee
- Department of Computer Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Mugahed A. Al-antari
- Department of Artificial Intelligence and Data Science, Sejong University, Seoul 05006, Republic of Korea;
| | - Gyanendra Prasad Joshi
- Department of AI Software, Kangwon National University, Samcheok 10587, Kangwon State, Republic of Korea;
| | - Yeong Hyeon Gu
- Department of Artificial Intelligence and Data Science, Sejong University, Seoul 05006, Republic of Korea;
| |
Collapse
|
2
|
Features from the photoplethysmogram and the electrocardiogram for estimating changes in blood pressure. Sci Rep 2023; 13:986. [PMID: 36653426 PMCID: PMC9849280 DOI: 10.1038/s41598-022-27170-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/27/2022] [Indexed: 01/19/2023] Open
Abstract
There is a growing emphasis being placed on the potential for cuffless blood pressure (BP) estimation through modelling of morphological features from the photoplethysmogram (PPG) and electrocardiogram (ECG). However, the appropriate features and models to use remain unclear. We investigated the best features available from the PPG and ECG for BP estimation using both linear and non-linear machine learning models. We conducted a clinical study in which changes in BP ([Formula: see text]BP) were induced by an infusion of phenylephrine in 30 healthy volunteers (53.8% female, 28.0 (9.0) years old). We extracted a large and diverse set of features from both the PPG and the ECG and assessed their individual importance for estimating [Formula: see text]BP through Shapley additive explanation values and a ranking coefficient. We trained, tuned, and evaluated linear (ordinary least squares, OLS) and non-linear (random forest, RF) machine learning models to estimate [Formula: see text]BP in a nested leave-one-subject-out cross-validation framework. We reported the results as correlation coefficient ([Formula: see text]), root mean squared error (RMSE), and mean absolute error (MAE). The non-linear RF model significantly ([Formula: see text]) outperformed the linear OLS model using both the PPG and the ECG signals across all performance metrics. Estimating [Formula: see text]SBP using the PPG alone ([Formula: see text] = 0.86 (0.23), RMSE = 5.66 (4.76) mmHg, MAE = 4.86 (4.29) mmHg) performed significantly better than using the ECG alone ([Formula: see text] = 0.69 (0.45), RMSE = 6.79 (4.76) mmHg, MAE = 5.28 (4.57) mmHg), all [Formula: see text]. The highest ranking features from the PPG largely modelled increasing reflected wave interference driven by changes in arterial stiffness. This finding was supported by changes observed in the PPG waveform in response to the phenylephrine infusion. However, a large number of features were required for accurate BP estimation, highlighting the high complexity of the problem. We conclude that the PPG alone may be further explored as a potential single source, cuffless, blood pressure estimator. The use of the ECG alone is not justified. Non-linear models may perform better as they are able to incorporate interactions between feature values and demographics. However, demographics may not adequately account for the unique and individualised relationship between the extracted features and BP.
Collapse
|
3
|
Lee S, Moon H, Al-antari MA, Lee G. Dual-Sensor Signals Based Exact Gaussian Process-Assisted Hybrid Feature Extraction and Weighted Feature Fusion for Respiratory Rate and Uncertainty Estimations. SENSORS (BASEL, SWITZERLAND) 2022; 22:8386. [PMID: 36366083 PMCID: PMC9654728 DOI: 10.3390/s22218386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Accurately estimating respiratory rate (RR) has become essential for patients and the elderly. Hence, we propose a novel method that uses exact Gaussian process regression (EGPR)-assisted hybrid feature extraction and feature fusion based on photoplethysmography and electrocardiogram signals to improve the reliability of accurate RR and uncertainty estimations. First, we obtain the power spectral features and use the multi-phase feature model to compensate for insufficient input data. Then, we combine four different feature sets and choose features with high weights using a robust neighbor component analysis. The proposed EGPR algorithm provides a confidence interval representing the uncertainty. Therefore, the proposed EGPR algorithm, including hybrid feature extraction and weighted feature fusion, is an excellent model with improved reliability for accurate RR estimation. Furthermore, the proposed EGPR methodology is likely the only one currently available that provides highly stable variation and confidence intervals. The proposed EGPR-MF, 0.993 breath per minute (bpm), and EGPR-feature fusion, 1.064 (bpm), show the lowest mean absolute error compared to the other models.
Collapse
Affiliation(s)
- Soojeong Lee
- Department of Computer Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea
| | - Hyeonjoon Moon
- Department of Computer Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea
| | - Mugahed A. Al-antari
- Department of Artificial intelligence, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea
| | - Gangseong Lee
- Ingenium College, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Korea
| |
Collapse
|
4
|
Gajendran MK, Rohowetz LJ, Koulen P, Mehdizadeh A. Novel Machine-Learning Based Framework Using Electroretinography Data for the Detection of Early-Stage Glaucoma. Front Neurosci 2022; 16:869137. [PMID: 35600610 PMCID: PMC9115110 DOI: 10.3389/fnins.2022.869137] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/28/2022] [Indexed: 01/05/2023] Open
Abstract
PurposeEarly-stage glaucoma diagnosis has been a challenging problem in ophthalmology. The current state-of-the-art glaucoma diagnosis techniques do not completely leverage the functional measures' such as electroretinogram's immense potential; instead, focus is on structural measures like optical coherence tomography. The current study aims to take a foundational step toward the development of a novel and reliable predictive framework for early detection of glaucoma using machine-learning-based algorithm capable of leveraging medically relevant information that ERG signals contain.MethodsERG signals from 60 eyes of DBA/2 mice were grouped for binary classification based on age. The signals were also grouped based on intraocular pressure (IOP) for multiclass classification. Statistical and wavelet-based features were engineered and extracted. Important predictors (ERG tests and features) were determined, and the performance of five machine learning-based methods were evaluated.ResultsRandom forest (bagged trees) ensemble classifier provided the best performance in both binary and multiclass classification of ERG signals. An accuracy of 91.7 and 80% was achieved for binary and multiclass classification, respectively, suggesting that machine-learning-based models can detect subtle changes in ERG signals if trained using advanced features such as those based on wavelet analyses.ConclusionsThe present study describes a novel, machine-learning-based method to analyze ERG signals providing additional information that may be used to detect early-stage glaucoma. Based on promising performance metrics obtained using the proposed machine-learning-based framework leveraging an established ERG data set, we conclude that the novel framework allows for detection of functional deficits of early/various stages of glaucoma in mice.
Collapse
Affiliation(s)
- Mohan Kumar Gajendran
- Department of Civil and Mechanical Engineering, School of Computing and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Landon J. Rohowetz
- Vision Research Center, Department of Ophthalmology, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, University of Missouri-Kansas City, Kansas City, MO, United States
- Department of Biomedical Sciences, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Amirfarhang Mehdizadeh
- Department of Civil and Mechanical Engineering, School of Computing and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
- Vision Research Center, Department of Ophthalmology, University of Missouri-Kansas City, Kansas City, MO, United States
- *Correspondence: Amirfarhang Mehdizadeh
| |
Collapse
|
5
|
Pereira PMM, Thomaz LA, Tavora LMN, Assuncao PAA, Fonseca-Pinto R, Paiva RP, Faria SMM. Skin lesion classification using features of 3D border lines. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:2726-2731. [PMID: 34891814 DOI: 10.1109/embc46164.2021.9629966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Machine learning algorithms are progressively assuming important roles as computational tools to support clinical diagnosis, namely in the classification of pigmented skin lesions using RGB images. Most current classification methods rely on common 2D image features derived from shape, colour or texture, which does not always guarantee the best results. This work presents a contribution to this field, by exploiting the lesions' border line characteristics using a new dimension - depth, which has not been thoroughly investigated so far. A selected group of features is extracted from the depth information of 3D images, which are then used for classification using a quadratic Support Vector Machine. Despite class imbalance often present in medical image datasets, the proposed algorithm achieves a top geometric mean of 94.87%, comprising 100.00% sensitivity and 90.00% specificity, using only depth information for the detection of Melanomas. Such results show that potential gains can be achieved by extracting information from this often overlooked dimension, which provides more balanced results in terms of sensitivity and specificity than other settings.
Collapse
|
6
|
Lavanga M, Heremans E, Moeyersons J, Bollen B, Jansen K, Ortibus E, Naulaers G, Van Huffel S, Caicedo A. Maturation of the Autonomic Nervous System in Premature Infants: Estimating Development Based on Heart-Rate Variability Analysis. Front Physiol 2021; 11:581250. [PMID: 33584326 PMCID: PMC7873975 DOI: 10.3389/fphys.2020.581250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
This study aims at investigating the development of premature infants' autonomic nervous system (ANS) based on a quantitative analysis of the heart-rate variability (HRV) with a variety of novel features. Additionally, the role of heart-rate drops, known as bradycardias, has been studied in relation to both clinical and novel sympathovagal indices. ECG data were measured for at least 3 h in 25 preterm infants (gestational age ≤32 weeks) for a total number of 74 recordings. The post-menstrual age (PMA) of each patient was estimated from the RR interval time-series by means of multivariate linear-mixed effects regression. The tachograms were segmented based on bradycardias in periods after, between and during bradycardias. For each of those epochs, a set of temporal, spectral and fractal indices were included in the regression model. The best performing model has R 2 = 0.75 and mean absolute error MAE = 1.56 weeks. Three main novelties can be reported. First, the obtained maturation models based on HRV have comparable performance to other development models. Second, the selected features for age estimation show a predominance of power and fractal features in the very-low- and low-frequency bands in explaining the infants' sympathovagal development from 27 PMA weeks until 40 PMA weeks. Third, bradycardias might disrupt the relationship between common temporal indices of the tachogram and the age of the infant and the interpretation of sympathovagal indices. This approach might provide a novel overview of post-natal autonomic maturation and an alternative development index to other electrophysiological data analysis.
Collapse
Affiliation(s)
- Mario Lavanga
- Division STADIUS, Department of Electrical Engineering (ESAT), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Elisabeth Heremans
- Division STADIUS, Department of Electrical Engineering (ESAT), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jonathan Moeyersons
- Division STADIUS, Department of Electrical Engineering (ESAT), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Bieke Bollen
- Department of Development and Regeneration, Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Katrien Jansen
- Department of Development and Regeneration, Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Els Ortibus
- Department of Development and Regeneration, Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Gunnar Naulaers
- Department of Development and Regeneration, Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sabine Van Huffel
- Division STADIUS, Department of Electrical Engineering (ESAT), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Alexander Caicedo
- Applied Mathematics and Computer Science, School of Engineering, Science and Technology, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
7
|
Attuel G, Gerasimova-Chechkina E, Argoul F, Yahia H, Arneodo A. Multifractal Desynchronization of the Cardiac Excitable Cell Network During Atrial Fibrillation. II. Modeling. Front Physiol 2019; 10:480. [PMID: 31105585 PMCID: PMC6492055 DOI: 10.3389/fphys.2019.00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 04/05/2019] [Indexed: 11/13/2022] Open
Abstract
In a companion paper (I. Multifractal analysis of clinical data), we used a wavelet-based multiscale analysis to reveal and quantify the multifractal intermittent nature of the cardiac impulse energy in the low frequency range ≲ 2Hz during atrial fibrillation (AF). It demarcated two distinct areas within the coronary sinus (CS) with regionally stable multifractal spectra likely corresponding to different anatomical substrates. The electrical activity also showed no sign of the kind of temporal correlations typical of cascading processes across scales, thereby indicating that the multifractal scaling is carried by variations in the large amplitude oscillations of the recorded bipolar electric potential. In the present study, to account for these observations, we explore the role of the kinetics of gap junction channels (GJCs), in dynamically creating a new kind of imbalance between depolarizing and repolarizing currents. We propose a one-dimensional (1D) spatial model of a denervated myocardium, where the coupling of cardiac cells fails to synchronize the network of cardiac cells because of abnormal transjunctional capacitive charging of GJCs. We show that this non-ohmic nonlinear conduction 1D modeling accounts quantitatively well for the "multifractal random noise" dynamics of the electrical activity experimentally recorded in the left atrial posterior wall area. We further demonstrate that the multifractal properties of the numerical impulse energy are robust to changes in the model parameters.
Collapse
Affiliation(s)
- Guillaume Attuel
- Geometry and Statistics in Acquisition Data, Centre de Recherche INRIA, Talence, France
| | | | - Françoise Argoul
- Laboratoire Ondes et Matières d'Aquitaine, Université de Bordeaux, UMR 5798, CNRS, Talence, France
| | - Hussein Yahia
- Geometry and Statistics in Acquisition Data, Centre de Recherche INRIA, Talence, France
| | - Alain Arneodo
- Laboratoire Ondes et Matières d'Aquitaine, Université de Bordeaux, UMR 5798, CNRS, Talence, France
| |
Collapse
|
8
|
Gadhoumi K, Do D, Badilini F, Pelter MM, Hu X. Wavelet leader multifractal analysis of heart rate variability in atrial fibrillation. J Electrocardiol 2018; 51:S83-S87. [PMID: 30177367 DOI: 10.1016/j.jelectrocard.2018.08.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/15/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Accurate and timely detection of atrial fibrillation (AF) episodes is important in primarily and secondary prevention of ischemic stroke and heart-related problems. In this work, heart rate regularity of ECG inter-beat intervals was investigated in episodes of AF and other rhythms using a wavelet leader based multifractal analysis. Our aim was to improve the detectability of AF episodes. METHODS Inter-beat intervals from 25 ECG recordings available in the MIT-BIH atrial fibrillation database were analysed. Four types of annotated rhythms (atrial fibrillation, atrial flutter, AV junctional rhythm, and other rhythms) were available. A wavelet leader based multifractal analysis was applied to 5 min non-overlapping windows of each recording to estimate the multifractal spectrum in each window. The width of the multifractal spectrum was analysed for its discrimination power between rhythm episodes. RESULTS In 10 of 25 recordings, the width of multifractal spectrum was significantly lower in episodes of AF than in other rhythms indicating increased regularity during AF. High classification accuracy (95%) of AF episodes was achieved using a combination of features derived from the multifractal analysis and statistical central moment features. CONCLUSIONS An increase in the regularity of inter-beat intervals was observed during AF episodes by means of multifractal analysis. Multifractal features may be used to improve AF detection accuracy.
Collapse
Affiliation(s)
- Kais Gadhoumi
- Department of Physiological Nursing, University of California, San Francisco, CA, USA.
| | - Duc Do
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Fabio Badilini
- Center for Physiologic Research, University of California, San Francisco, CA, USA
| | - Michele M Pelter
- Department of Physiological Nursing, University of California, San Francisco, CA, USA
| | - Xiao Hu
- Department of Physiological Nursing, University of California, San Francisco, CA, USA; Institute for Computational Health Sciences, University of California, San Francisco, CA, USA; Department of Neurological Surgery, University of California, San Francisco, CA, USA; Department of Neurosurgery, University of California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Lavanga M, De Wel O, Caicedo A, Heremans E, Jansen K, Dereymaeker A, Naulaers G, Van Huffel S. Automatic quiet sleep detection based on multifractality in preterm neonates: Effects of maturation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:2010-2013. [PMID: 29060290 DOI: 10.1109/embc.2017.8037246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study investigates the multifractal formalism framework for quiet sleep detection in preterm babies. EEG recordings from 25 healthy preterm infants were used in order to evaluate the performance of multifractal measures for the detection of quiet sleep. Results indicate that multifractal analysis based on wavelet leaders is able to identify quiet sleep epochs, but the classifier performances seem to be highly affected by the infant's age. In particular, from the developed classifiers, the lowest area under the curve (AUC) has been obtained for EEG recordings at very young age (≤ 31 weeks post-menstrual age), and the maximum at full-term age (≥ 37 weeks post-menstrual age). The improvement in classification performances can be due to a change in the multifractality properties of neonatal EEG during the maturation of the infant, which makes the EEG sleep stages more distinguishable.
Collapse
|
10
|
Chudáček V, Andén J, Mallat S, Abry P, Doret M. Scattering transform for intrapartum fetal heart rate variability fractal analysis: a case-control study. IEEE Trans Biomed Eng 2014; 61:1100-8. [PMID: 24658235 DOI: 10.1109/tbme.2013.2294324] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Intrapartum fetal heart rate monitoring, aiming at early acidosis detection, constitutes an important public health stake. Scattering transform is proposed here as a new tool to analyze intrapartum fetal heart rate (FHR) variability. It consists of a nonlinear extension of the underlying wavelet transform, that thus preserves its multiscale nature. Applied to an FHR signal database constructed in a French academic hospital, the scattering transform is shown to permit to efficiently measure scaling exponents characterizing the fractal properties of intrapartum FHR temporal dynamics, that relate not only to the sole covariance (correlation scaling exponent), but also to the full dependence structure of data (intermittency scaling exponent). Such exponents are found to satisfactorily discriminate temporal dynamics of healthy subjects (from that of nonhealthy ones) and to emphasize the role of the highest frequencies (around and above 1 Hz) in intrapartum FHR variability. This permits us to achieve satisfactory classification performance that improves on those obtained from the analysis of International Federation of Gynecology and Obstetrics (FIGO) criteria, notably by classifying as healthy a number of subjects that were incorrectly classified as nonhealthy by classical clinically used FIGO criteria. Combined to obstetrician annotations, these scaling exponents enable us to sketch a typology of these FIGO-false positive subjects. Also, they permit us to monitor the evolution along time of the intrapartum health status of the fetuses and to estimate an optimal detection time-frame.
Collapse
|
11
|
Chudáček V, Andén J, Mallat S, Abry P, Doret M. Scattering transform for intrapartum fetal heart rate characterization and acidosis detection. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2013:2898-901. [PMID: 24110333 DOI: 10.1109/embc.2013.6610146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Early acidosis detection and asphyxia prediction in intrapartum fetal heart rate is of major concern. This contribution aims at assessing the potential of the Scattering Transform to characterize intrapartum fetal heart rate. Elaborating on discrete wavelet transform, the Scattering Transform performs a non linear and multiscale analysis, thus probing not only the covariance structure of data but also the full dependence structure. Applied to a real database constructed by a French public academic hospital, the Scattering Transform is shown to catch relevant features of intrapartum fetal heart rate time dynamics and to have a satisfactory ability to discriminate Normal subjects from Abnormal.
Collapse
|