1
|
Yan X, Chen L, Guo G. Kernel-based data transformation model for nonlinear classification of symbolic data. Soft comput 2022. [DOI: 10.1007/s00500-021-06600-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
2
|
Pennati F, Aliboni L, Antoniazza A, Beretta D, Dias O, Baldi BG, Sawamura M, Chate RC, De Carvalho CRR, Albuquerque A, Aliverti A. Texture-based classification of lung disease patterns in chronic hypersensitivity pneumonitis and comparison to clinical outcomes. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:3427-3430. [PMID: 34891976 DOI: 10.1109/embc46164.2021.9630247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Computer-aided detection algorithms applied to CT lung imaging have the potential to objectively quantify pulmonary pathology. We aim to develop an automatic classification method based on textural features able to classify healthy and pathological patterns on CT lung images and to quantify the extent of each disease pattern in a group of patients with chronic hypersensitivity pneumonitis (cHP), in comparison to pulmonary function tests (PFTs).27 cHP patients were scanned via high resolution CT (HRCT) at full-inspiration. Regions of interest (ROIs) were extracted and labeled as normal (NOR), ground glass opacity (GGO), reticulation (RET), consolidation (C), honeycombing (HB) and air trapping (AT). For each ROI, statistical, morphological and fractal parameters were computed. For automatic classification, we compared two classification methods (Bayesian and Support Vector Machine) and three ROI sizes. The classifier was therefore applied to the overall CT images and the extent of each class was calculated and compared to PFTs. Better classification accuracy was found for the Bayesian classifier and the 16x16 ROI size: 92.1±2.7%. The extent of GGO, HB and NOR significantly correlated with forced vital capacity (FVC) and the extent of NOR with carbon monoxide diffusing capacity (DLCO).Clinical Relevance- Texture analysis can differentiate and objectively quantify pathological classes in the lung parenchyma and may represent a quantitative diagnostic tool in cHP.
Collapse
|
3
|
Ebner L, Christodoulidis S, Stathopoulou T, Geiser T, Stalder O, Limacher A, Heverhagen JT, Mougiakakou SG, Christe A. Meta-analysis of the radiological and clinical features of Usual Interstitial Pneumonia (UIP) and Nonspecific Interstitial Pneumonia (NSIP). PLoS One 2020; 15:e0226084. [PMID: 31929532 PMCID: PMC6957301 DOI: 10.1371/journal.pone.0226084] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/18/2019] [Indexed: 02/02/2023] Open
Abstract
PURPOSE To conduct a meta-analysis to determine specific computed tomography (CT) patterns and clinical features that discriminate between nonspecific interstitial pneumonia (NSIP) and usual interstitial pneumonia (UIP). MATERIALS AND METHODS The PubMed/Medline and Embase databases were searched for studies describing the radiological patterns of UIP and NSIP in chest CT images. Only studies involving histologically confirmed diagnoses and a consensus diagnosis by an interstitial lung disease (ILD) board were included in this analysis. The radiological patterns and patient demographics were extracted from suitable articles. We used random-effects meta-analysis by DerSimonian & Laird and calculated pooled odds ratios for binary data and pooled mean differences for continuous data. RESULTS Of the 794 search results, 33 articles describing 2,318 patients met the inclusion criteria. Twelve of these studies included both NSIP (338 patients) and UIP (447 patients). NSIP-patients were significantly younger (NSIP: median age 54.8 years, UIP: 59.7 years; mean difference (MD) -4.4; p = 0.001; 95% CI: -6.97 to -1.77), less often male (NSIP: median 52.8%, UIP: 73.6%; pooled odds ratio (OR) 0.32; p<0.001; 95% CI: 0.17 to 0.60), and less often smokers (NSIP: median 55.1%, UIP: 73.9%; OR 0.42; p = 0.005; 95% CI: 0.23 to 0.77) than patients with UIP. The CT findings from patients with NSIP revealed significantly lower levels of the honeycombing pattern (NSIP: median 28.9%, UIP: 73.4%; OR 0.07; p<0.001; 95% CI: 0.02 to 0.30) with less peripheral predominance (NSIP: median 41.8%, UIP: 83.3%; OR 0.21; p<0.001; 95% CI: 0.11 to 0.38) and more subpleural sparing (NSIP: median 40.7%, UIP: 4.3%; OR 16.3; p = 0.005; 95% CI: 2.28 to 117). CONCLUSION Honeycombing with a peripheral predominance was significantly associated with a diagnosis of UIP. The NSIP pattern showed more subpleural sparing. The UIP pattern was predominantly observed in elderly males with a history of smoking, whereas NSIP occurred in a younger patient population.
Collapse
Affiliation(s)
- Lukas Ebner
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | | | - Thomai Stathopoulou
- ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Thomas Geiser
- Department for Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Odile Stalder
- CTU Bern and Institute of Social and Preventive Medicine (ISPM), University of Bern, Switzerland
| | - Andreas Limacher
- CTU Bern and Institute of Social and Preventive Medicine (ISPM), University of Bern, Switzerland
| | - Johannes T. Heverhagen
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Stavroula G. Mougiakakou
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Switzerland
- ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Andreas Christe
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| |
Collapse
|
4
|
Choudhary P, Hazra A. Chest disease radiography in twofold: using convolutional neural networks and transfer learning. EVOLVING SYSTEMS 2019. [DOI: 10.1007/s12530-019-09316-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Jun S, Kim N, Seo JB, Lee YK, Lynch DA. An Ensemble Method for Classifying Regional Disease Patterns of Diffuse Interstitial Lung Disease Using HRCT Images from Different Vendors. J Digit Imaging 2017; 30:761-771. [PMID: 28224381 PMCID: PMC5681462 DOI: 10.1007/s10278-017-9957-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
We propose the use of ensemble classifiers to overcome inter-scanner variations in the differentiation of regional disease patterns in high-resolution computed tomography (HRCT) images of diffuse interstitial lung disease patients obtained from different scanners. A total of 600 rectangular 20 × 20-pixel regions of interest (ROIs) on HRCT images obtained from two different scanners (GE and Siemens) and the whole lung area of 92 HRCT images were classified as one of six regional pulmonary disease patterns by two expert radiologists. Textual and shape features were extracted from each ROI and the whole lung parenchyma. For automatic classification, individual and ensemble classifiers were trained and tested with the ROI dataset. We designed the following three experimental sets: an intra-scanner study in which the training and test sets were from the same scanner, an integrated scanner study in which the data from the two scanners were merged, and an inter-scanner study in which the training and test sets were acquired from different scanners. In the ROI-based classification, the ensemble classifiers showed better (p < 0.001) accuracy (89.73%, SD = 0.43) than the individual classifiers (88.38%, SD = 0.31) in the integrated scanner test. The ensemble classifiers also showed partial improvements in the intra- and inter-scanner tests. In the whole lung classification experiment, the quantification accuracies of the ensemble classifiers with integrated training (49.57%) were higher (p < 0.001) than the individual classifiers (48.19%). Furthermore, the ensemble classifiers also showed better performance in both the intra- and inter-scanner experiments. We concluded that the ensemble classifiers provide better performance when using integrated scanner images.
Collapse
Affiliation(s)
- Sanghoon Jun
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, South Korea
| | - Namkug Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, South Korea.
- Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, South Korea.
| | - Joon Beom Seo
- Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, South Korea
| | - Young Kyung Lee
- Department of Laboratory Medicine, Hallym University College of Medicine, Anyang, South Korea
| | - David A Lynch
- Department of Radiology, National Jewish Medical and Research Center, Denver, CO, USA
| |
Collapse
|
6
|
Christodoulidis S, Anthimopoulos M, Ebner L, Christe A, Mougiakakou S. Multisource Transfer Learning With Convolutional Neural Networks for Lung Pattern Analysis. IEEE J Biomed Health Inform 2016; 21:76-84. [PMID: 28114048 DOI: 10.1109/jbhi.2016.2636929] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Early diagnosis of interstitial lung diseases is crucial for their treatment, but even experienced physicians find it difficult, as their clinical manifestations are similar. In order to assist with the diagnosis, computer-aided diagnosis systems have been developed. These commonly rely on a fixed scale classifier that scans CT images, recognizes textural lung patterns, and generates a map of pathologies. In a previous study, we proposed a method for classifying lung tissue patterns using a deep convolutional neural network (CNN), with an architecture designed for the specific problem. In this study, we present an improved method for training the proposed network by transferring knowledge from the similar domain of general texture classification. Six publicly available texture databases are used to pretrain networks with the proposed architecture, which are then fine-tuned on the lung tissue data. The resulting CNNs are combined in an ensemble and their fused knowledge is compressed back to a network with the original architecture. The proposed approach resulted in an absolute increase of about 2% in the performance of the proposed CNN. The results demonstrate the potential of transfer learning in the field of medical image analysis, indicate the textural nature of the problem and show that the method used for training a network can be as important as designing its architecture.
Collapse
|
7
|
Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S. Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:1207-1216. [PMID: 26955021 DOI: 10.1109/tmi.2016.2535865] [Citation(s) in RCA: 479] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Automated tissue characterization is one of the most crucial components of a computer aided diagnosis (CAD) system for interstitial lung diseases (ILDs). Although much research has been conducted in this field, the problem remains challenging. Deep learning techniques have recently achieved impressive results in a variety of computer vision problems, raising expectations that they might be applied in other domains, such as medical image analysis. In this paper, we propose and evaluate a convolutional neural network (CNN), designed for the classification of ILD patterns. The proposed network consists of 5 convolutional layers with 2 × 2 kernels and LeakyReLU activations, followed by average pooling with size equal to the size of the final feature maps and three dense layers. The last dense layer has 7 outputs, equivalent to the classes considered: healthy, ground glass opacity (GGO), micronodules, consolidation, reticulation, honeycombing and a combination of GGO/reticulation. To train and evaluate the CNN, we used a dataset of 14696 image patches, derived by 120 CT scans from different scanners and hospitals. To the best of our knowledge, this is the first deep CNN designed for the specific problem. A comparative analysis proved the effectiveness of the proposed CNN against previous methods in a challenging dataset. The classification performance ( ~ 85.5%) demonstrated the potential of CNNs in analyzing lung patterns. Future work includes, extending the CNN to three-dimensional data provided by CT volume scans and integrating the proposed method into a CAD system that aims to provide differential diagnosis for ILDs as a supportive tool for radiologists.
Collapse
|
8
|
Anthimopoulos M, Christodoulidis S, Christe A, Mougiakakou S. Classification of interstitial lung disease patterns using local DCT features and random forest. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:6040-3. [PMID: 25571374 DOI: 10.1109/embc.2014.6945006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Over the last decade, a plethora of computer-aided diagnosis (CAD) systems have been proposed aiming to improve the accuracy of the physicians in the diagnosis of interstitial lung diseases (ILD). In this study, we propose a scheme for the classification of HRCT image patches with ILD abnormalities as a basic component towards the quantification of the various ILD patterns in the lung. The feature extraction method relies on local spectral analysis using a DCT-based filter bank. After convolving the image with the filter bank, q-quantiles are computed for describing the distribution of local frequencies that characterize image texture. Then, the gray-level histogram values of the original image are added forming the final feature vector. The classification of the already described patches is done by a random forest (RF) classifier. The experimental results prove the superior performance and efficiency of the proposed approach compared against the state-of-the-art.
Collapse
|