1
|
Deng X, Yang M, Chen X, Zhan Y. The role of mindfulness on theta inter-brain synchrony during cooperation feedback processing: An EEG-based hyperscanning study. Int J Clin Health Psychol 2023; 23:100396. [PMID: 37521502 PMCID: PMC10372402 DOI: 10.1016/j.ijchp.2023.100396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Mindfulness appears to improve empathy and understanding in relationships, which are necessary for successful cooperation. However, the impact of mindfulness on cooperation has not been fully studied. This study used hyperscanning technique to examine the effect of mindfulness on the inter-brain synchrony of interacting individuals during the cooperative tasks. Forty-one dyads were randomly assigned to a mindfulness group or a non-mindfulness group. Dyads of the mindfulness group performed a short mindfulness exercise following a 15-minute mindfulness audio guidance. Dyads of the non-mindfulness group were instructed to rest quietly with their eyes closed. Then, simultaneously and continuously EEG was recorded from all dyads when they completed a computer-based cooperative game task. Reaction times (RTs) and success rates were used to indicate the behavioral performance, and phase locking value (PLV) was used to indicate the inter-brain synchrony. The results showed that (1) Greater theta inter-brain synchrony during the cooperative computer game tasks was observed in the mindfulness group than in the non-mindfulness group; (2) Greater theta inter-brain synchrony was observed in the successful cooperation conditions as compared to those in the failure cooperation conditions; (3) Greater theta inter-brain synchrony was observed at the frontal region as compared to those at the parietal-occipital region in the successful cooperation condition. The results expand the neural basis of the effects of mindfulness on cooperation feedback processing.
Collapse
Affiliation(s)
- Xinmei Deng
- School of Psychology, Shenzhen University, Shenzhen, China
- Center for Mental Health, Shenzhen University, Shenzhen, China
| | - Meng Yang
- School of Psychology, Shenzhen University, Shenzhen, China
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Xiaomin Chen
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Yong Zhan
- School of Psychology, Shenzhen University, Shenzhen, China
| |
Collapse
|
2
|
Turk E, Vroomen J, Fonken Y, Levy J, van den Heuvel MI. In sync with your child: The potential of parent-child electroencephalography in developmental research. Dev Psychobiol 2022; 64:e22221. [PMID: 35312051 DOI: 10.1002/dev.22221] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022]
Abstract
Healthy interaction between parent and child is foundational for the child's socioemotional development. Recently, an innovative paradigm shift in electroencephalography (EEG) research has enabled the simultaneous measurement of neural activity in caregiver and child. This dual-EEG or hyperscanning approach, termed parent-child dual-EEG, combines the strength of both behavioral observations and EEG methods. In this review, we aim to inform on the potential of dual-EEG in parents and children (0-6 years) for developmental researchers. We first provide a general overview of the dual-EEG technique and continue by reviewing the first empirical work on the emerging field of parent-child dual-EEG, discussing the limited but fascinating findings on parent-child brain-to-behavior and brain-to-brain synchrony. We then continue by providing an overview of dual-EEG analysis techniques, including the technical challenges and solutions one may encounter. We finish by discussing the potential of parent-child dual-EEG for the future of developmental research. The analysis of multiple EEG data is technical and challenging, but when performed well, parent-child EEG may transform the way we understand how caregiver and child connect on a neurobiological level. Importantly, studying objective physiological measures of parent-child interactions could lead to the identification of novel brain-to-brain synchrony markers of interaction quality.
Collapse
Affiliation(s)
- Elise Turk
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Jean Vroomen
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Yvonne Fonken
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Jonathan Levy
- Baruch Ivcher School of Psychology, Interdisciplinary Center Herzliya (IDC), Herzliya, Israel.,Department of Neuroscience and Biomedical Engineering, Aalto University, Aalto, Finland
| | | |
Collapse
|
3
|
Shamay-Tsoory SG, Hertz U. Adaptive Empathy: A Model for Learning Empathic Responses in Response to Feedback. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2022; 17:1008-1023. [PMID: 35050819 DOI: 10.1177/17456916211031926] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Empathy is usually deployed in social interactions. Nevertheless, common measures and examinations of empathy study this construct in isolation from the person in distress. In this article we seek to extend the field of examination to include both empathizer and target to determine whether and how empathic responses are affected by feedback and learned through interaction. Building on computational approaches in feedback-based adaptations (e.g., no feedback, model-free and model-based learning), we propose a framework for understanding how empathic responses are learned on the basis of feedback. In this framework, adaptive empathy, defined as the ability to adapt one's empathic responses, is a central aspect of empathic skills and can provide a new dimension to the evaluation and investigation of empathy. By extending existing neural models of empathy, we suggest that adaptive empathy may be mediated by interactions between the neural circuits associated with valuation, shared distress, observation-execution, and mentalizing. Finally, we propose that adaptive empathy should be considered a prominent facet of empathic capabilities with the potential to explain empathic behavior in health and psychopathology.
Collapse
Affiliation(s)
- Simone G Shamay-Tsoory
- Department of Psychology, University of Haifa.,Integrated Brain and Behavior Research Center (IBBRC), University of Haifa
| | - Uri Hertz
- Integrated Brain and Behavior Research Center (IBBRC), University of Haifa.,Department of Cognitive Sciences, University of Haifa
| |
Collapse
|
4
|
Liu H, Zhao C, Wang F, Zhang D. Inter-brain amplitude correlation differentiates cooperation from competition in a motion-sensing sports game. Soc Cogn Affect Neurosci 2021; 16:552-564. [PMID: 33693825 PMCID: PMC8138086 DOI: 10.1093/scan/nsab031] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/07/2021] [Accepted: 03/08/2021] [Indexed: 11/23/2022] Open
Abstract
Cooperation and competition are two basic modes of human interaction. Their underlying neural mechanisms, especially from an interpersonal perspective, have not been fully explored. Using the electroencephalograph-based hyperscanning technique, the present study investigated the neural correlates of both cooperation and competition within the same ecological paradigm using a classic motion-sensing tennis game. Both the inter-brain coupling (the inter-brain amplitude correlation and inter-brain phase-locking) and the intra-brain spectral power were analyzed. Only the inter-brain amplitude correlation showed a significant difference between cooperation and competition, with different spatial patterns at theta, alpha and beta frequency bands. Further inspection revealed distinct inter-brain coupling patterns for cooperation and competition; cooperation elicited positive inter-brain amplitude correlation at the delta and theta bands in extensive brain regions, while competition was associated with negative occipital inter-brain amplitude correlation at the alpha and beta bands. These findings add to our knowledge of the neural mechanisms of cooperation and competition and suggest the significance of adopting an inter-brain perspective in exploring the neural underpinnings of social interaction in ecological contexts.
Collapse
Affiliation(s)
- Huashuo Liu
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing 100084, China
| | - Chenying Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Fei Wang
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
| | - Dan Zhang
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Brain-to-Brain Neural Synchrony During Social Interactions: A Systematic Review on Hyperscanning Studies. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196669] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The aim of this study was to conduct a comprehensive review on hyperscanning research (measuring brain activity simultaneously from more than two people interacting) using an explicit systematic method, the preferred reporting items for systematic reviews and meta-analyses (PRISMA). Data were searched from IEEE Xplore, PubMed, Engineering Village, Web of Science and Scopus databases. Inclusion criteria were journal articles written in English from 2000 to 19 June 2019. A total of 126 empirical studies were screened out to address three specific questions regarding the neuroimaging method, the application domain, and the experiment paradigm. Results showed that the most used neuroimaging method with hyperscanning was magnetoencephalography/electroencephalography (MEG/EEG; 47%), and the least used neuroimaging method was hyper-transcranial Alternating Current Stimulation (tACS) (1%). Applications in cognition accounted for almost half the studies (48%), while educational applications accounted for less than 5% of the studies. Applications in decision-making tasks were the second most common (26%), shortly followed by applications in motor synchronization (23%). The findings from this systematic review that were based on documented, transparent and reproducible searches should help build cumulative knowledge and guide future research regarding inter-brain neural synchrony during social interactions, that is, hyperscanning research.
Collapse
|
6
|
Cinel C, Valeriani D, Poli R. Neurotechnologies for Human Cognitive Augmentation: Current State of the Art and Future Prospects. Front Hum Neurosci 2019; 13:13. [PMID: 30766483 PMCID: PMC6365771 DOI: 10.3389/fnhum.2019.00013] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/10/2019] [Indexed: 01/10/2023] Open
Abstract
Recent advances in neuroscience have paved the way to innovative applications that cognitively augment and enhance humans in a variety of contexts. This paper aims at providing a snapshot of the current state of the art and a motivated forecast of the most likely developments in the next two decades. Firstly, we survey the main neuroscience technologies for both observing and influencing brain activity, which are necessary ingredients for human cognitive augmentation. We also compare and contrast such technologies, as their individual characteristics (e.g., spatio-temporal resolution, invasiveness, portability, energy requirements, and cost) influence their current and future role in human cognitive augmentation. Secondly, we chart the state of the art on neurotechnologies for human cognitive augmentation, keeping an eye both on the applications that already exist and those that are emerging or are likely to emerge in the next two decades. Particularly, we consider applications in the areas of communication, cognitive enhancement, memory, attention monitoring/enhancement, situation awareness and complex problem solving, and we look at what fraction of the population might benefit from such technologies and at the demands they impose in terms of user training. Thirdly, we briefly review the ethical issues associated with current neuroscience technologies. These are important because they may differentially influence both present and future research on (and adoption of) neurotechnologies for human cognitive augmentation: an inferior technology with no significant ethical issues may thrive while a superior technology causing widespread ethical concerns may end up being outlawed. Finally, based on the lessons learned in our analysis, using past trends and considering other related forecasts, we attempt to forecast the most likely future developments of neuroscience technology for human cognitive augmentation and provide informed recommendations for promising future research and exploitation avenues.
Collapse
Affiliation(s)
- Caterina Cinel
- Brain Computer Interfaces and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom
| | - Davide Valeriani
- Brain Computer Interfaces and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom
- Department of Otolaryngology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Riccardo Poli
- Brain Computer Interfaces and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom
| |
Collapse
|
7
|
Minagawa Y, Xu M, Morimoto S. Toward Interactive Social Neuroscience: Neuroimaging Real-World Interactions in Various Populations. JAPANESE PSYCHOLOGICAL RESEARCH 2018. [DOI: 10.1111/jpr.12207] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Hu Y, Hu Y, Li X, Pan Y, Cheng X. Brain-to-brain synchronization across two persons predicts mutual prosociality. Soc Cogn Affect Neurosci 2018; 12:1835-1844. [PMID: 29040766 PMCID: PMC5716073 DOI: 10.1093/scan/nsx118] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/10/2017] [Indexed: 12/19/2022] Open
Abstract
People tend to be more prosocial after synchronizing behaviors with others, yet the underlying neural mechanisms are rarely known. In this study, participant dyads performed either a coordination task or an independence task, with their brain activations recorded via the functional near-infrared spectroscopy hyperscanning technique. Participant dyads in the coordination group showed higher synchronized behaviors and greater subsequent inclination to help each other than those in the independence group, indicating the prosocial effect of interpersonal synchrony. Importantly, the coordination group demonstrated the significant task-related brain coherence, namely the interbrain synchronization, at the left middle frontal area. The detected interbrain synchronization was sensitive to shared intentionality between participants and was correlated with the mutual prosocial inclination. Further, the task-related brain coherence played a mediation role in the prosocial effect of interpersonal synchrony. This study reveals the relevance of brain-to-brain synchronization among individuals with subsequent mutual prosocial inclination and suggests the neural mechanism associating with shared cognition for the facilitation of interpersonal synchrony on prosociality.
Collapse
Affiliation(s)
- Yi Hu
- Faculty of Education, East China Normal University, Shanghai, China.,The Key Lab of Brain Functional Genomics, MOE & STCSM, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yinying Hu
- The Key Lab of Brain Functional Genomics, MOE & STCSM, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Xianchun Li
- The Key Lab of Brain Functional Genomics, MOE & STCSM, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yafeng Pan
- The Key Lab of Brain Functional Genomics, MOE & STCSM, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Xiaojun Cheng
- The Key Lab of Brain Functional Genomics, MOE & STCSM, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| |
Collapse
|
9
|
Inter-brain synchrony and cooperation context in interactive decision making. Biol Psychol 2017; 133:54-62. [PMID: 29292232 DOI: 10.1016/j.biopsycho.2017.12.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 11/20/2022]
Abstract
People engaged in interactive decision making rely on prior decision behaviors by other persons to make new choices and they exhibit inter-brain synchrony between each other. The functional meanings of such inter-brain synchrony, however, remains obscure. In the present study, dyads (15 pairs, all female) played the Prisoner's Dilemma game while their brain activities were recorded simultaneously by electroencephalography (EEG)-based hyperscanning technique. We manipulated the context of the game with higher versus lower cooperation index (HCI vs. LCI) and to each participant, we depicted the interaction as involving either another human partner or a machine (H-H vs. H-M). The results showed a higher cooperation rate and larger theta/alpha-band inter-brain synchrony in condition H-H than in H-M. In the condition H-H, there were larger centrofrontal theta-band and centroparietal alpha-band inter-brain synchrony in tasks set for high cooperation (HCI vs. LCI). Enhanced inter-brain synchrony covaried with increased cooperative choices observed between LCI and HCI. Furthermore, a subjective measure of perceived cooperativeness mediated the relationship between game context and inter-brain synchrony. These findings provide evidence for a role of cooperation on inter-brain synchrony during interactive decision making, and suggest distinct underlying neural processes recruited by cooperation contexts to enable high-level social cognitive processing in decision making.
Collapse
|
10
|
Balconi M, Vanutelli ME. Cooperation and Competition with Hyperscanning Methods: Review and Future Application to Emotion Domain. Front Comput Neurosci 2017; 11:86. [PMID: 29033810 PMCID: PMC5627061 DOI: 10.3389/fncom.2017.00086] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/06/2017] [Indexed: 11/24/2022] Open
Abstract
Cooperation and competition, as two common and opposite examples of interpersonal dynamics, are thought to be reflected by different cognitive, neural, and behavioral patterns. According to the conventional approach, they have been explored by measuring subjects' reactions during individual performance or turn-based interactions in artificial settings, that don't allow on-line, ecological enactment of real-life social exchange. Considering the importance of these factors, and accounting for the complexity of such phenomena, the hyperscanning approach emerged as a multi-subject paradigm since it allows the simultaneous recording of the brain activity from multiple participants interacting. In this view, the present paper aimed at reviewing the most significant work about cooperation and competition by EEG hyperscanning technique, which proved to be a promising tool in capturing the sudden course of social interactions. In detail, the review will consider and group different experimental tasks that have been developed so far: (1) paradigms that used rhythm, music and motor synchronization; (2) card tasks taken from the Game Theory; (3) computerized tasks; and (4) possible real-life applications. Finally, although highlighting the potential contribution of such approach, some important limitations about these paradigms will be elucidated, with a specific focus on the emotional domain.
Collapse
Affiliation(s)
- Michela Balconi
- Research Unit in Affective and Social Neuroscience, Catholic University of Milan, Milan, Italy.,Department of Psychology, Catholic University of Milan, Milan, Italy
| | - Maria E Vanutelli
- Research Unit in Affective and Social Neuroscience, Catholic University of Milan, Milan, Italy.,Department of Psychology, Catholic University of Milan, Milan, Italy.,Department of Philosophy, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
11
|
Neural dynamics of two players when using nonverbal cues to gauge intentions to cooperate during the Prisoner's Dilemma Game. Neuroimage 2017; 157:263-274. [DOI: 10.1016/j.neuroimage.2017.06.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/31/2017] [Accepted: 06/09/2017] [Indexed: 11/20/2022] Open
|
12
|
Tang H, Mai X, Wang S, Zhu C, Krueger F, Liu C. Interpersonal brain synchronization in the right temporo-parietal junction during face-to-face economic exchange. Soc Cogn Affect Neurosci 2015. [PMID: 26211014 DOI: 10.1093/scan/nsv092] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In daily life, interpersonal interactions are influenced by uncertainty about other people's intentions. Face-to-face (FF) interaction reduces such uncertainty by providing external visible cues such as facial expression or body gestures and facilitates shared intentionality to promote belief of cooperative decisions and actual cooperative behaviors in interaction. However, so far little is known about interpersonal brain synchronization between two people engaged in naturally occurring FF interactions. In this study, we combined an adapted ultimatum game with functional near-infrared spectroscopy (fNIRS) hyperscanning to investigate how FF interaction impacts interpersonal brain synchronization during economic exchange. Pairs of strangers interacted repeatedly either FF or face-blocked (FB), while their activation was simultaneously measured in the right temporo-parietal junction (rTPJ) and the control region, right dorsolateral prefrontal cortex (rDLPFC). Behaviorally, FF interactions increased shared intentionality between strangers, leading more positive belief of cooperative decisions and more actual gains in the game. FNIRS results indicated increased interpersonal brain synchronizations during FF interactions in rTPJ (but not in rDLPFC) with greater shared intentionality between partners. These results highlighted the importance of rTPJ in collaborative social interactions during FF economic exchange and warrant future research that combines FF interactions with fNIRS hyperscanning to study social brain disorders such as autism.
Collapse
Affiliation(s)
- Honghong Tang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiaoqin Mai
- Department of Psychology, Renmin University of China, Beijing 100872, China
| | - Shun Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China
| | - Chaozhe Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China
| | - Frank Krueger
- Molecular Neuroscience Department, and Department of Psychology, George Mason University, Fairfax, VA 22030, USA
| | - Chao Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China,
| |
Collapse
|
13
|
Babiloni F, Astolfi L. Social neuroscience and hyperscanning techniques: past, present and future. Neurosci Biobehav Rev 2014; 44:76-93. [PMID: 22917915 PMCID: PMC3522775 DOI: 10.1016/j.neubiorev.2012.07.006] [Citation(s) in RCA: 281] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 04/20/2012] [Accepted: 07/26/2012] [Indexed: 10/28/2022]
Abstract
This paper reviews the published literature on the hyperscanning methodologies using hemodynamic or neuro-electric modalities. In particular, we describe how different brain recording devices have been employed in different experimental paradigms to gain information about the subtle nature of human interactions. This review also included papers based on single-subject recordings in which a correlation was found between the activities of different (non-simultaneously recorded) participants in the experiment. The descriptions begin with the methodological issues related to the simultaneous measurements and the descriptions of the results generated by such approaches will follow. Finally, a discussion of the possible future uses of such new approaches to explore human social interactions will be presented.
Collapse
Affiliation(s)
- Fabio Babiloni
- IRCCS Fondazione Santa Lucia, via Ardeatina 306, Rome, Italy; Department of Physiology and Pharmacology, University of Rome Sapienza, P.le A. Moro 5, 00185, Rome, Italy.
| | - Laura Astolfi
- IRCCS Fondazione Santa Lucia, via Ardeatina 306, Rome, Italy; Department of Computer, Control, and Management Engineering, University of Rome Sapienza, via Ariosto 25, 00185, Rome, Italy.
| |
Collapse
|
14
|
Burgess AP. On the interpretation of synchronization in EEG hyperscanning studies: a cautionary note. Front Hum Neurosci 2013; 7:881. [PMID: 24399948 PMCID: PMC3870947 DOI: 10.3389/fnhum.2013.00881] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/03/2013] [Indexed: 11/13/2022] Open
Abstract
EEG Hyperscanning is a method for studying two or more individuals simultaneously with the objective of elucidating how co-variations in their neural activity (i.e., hyperconnectivity) are influenced by their behavioral and social interactions. The aim of this study was to compare the performance of different hyper-connectivity measures using (i) simulated data, where the degree of coupling could be systematically manipulated, and (ii) individually recorded human EEG combined into pseudo-pairs of participants where no hyper-connections could exist. With simulated data we found that each of the most widely used measures of hyperconnectivity were biased and detected hyper-connections where none existed. With pseudo-pairs of human data we found spurious hyper-connections that arose because there were genuine similarities between the EEG recorded from different people independently but under the same experimental conditions. Specifically, there were systematic differences between experimental conditions in terms of the rhythmicity of the EEG that were common across participants. As any imbalance between experimental conditions in terms of stimulus presentation or movement may affect the rhythmicity of the EEG, this problem could apply in many hyperscanning contexts. Furthermore, as these spurious hyper-connections reflected real similarities between the EEGs, they were not Type-1 errors that could be overcome by some appropriate statistical control. However, some measures that have not previously been used in hyperconnectivity studies, notably the circular correlation co-efficient (CCorr), were less susceptible to detecting spurious hyper-connections of this type. The reason for this advantage in performance is discussed and the use of the CCorr as an alternative measure of hyperconnectivity is advocated.
Collapse
Affiliation(s)
- Adrian P Burgess
- Aston Brain Centre, School of Life and Health Sciences, Aston University Birmingham, UK
| |
Collapse
|