Chan HF, Ma S, Leong KW. Can microfluidics address biomanufacturing challenges in drug/gene/cell therapies?
Regen Biomater 2016;
3:87-98. [PMID:
27047674 PMCID:
PMC4817324 DOI:
10.1093/rb/rbw009]
[Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 01/18/2016] [Indexed: 12/15/2022] Open
Abstract
Translation of any inventions into products requires manufacturing. Development of drug/gene/cell delivery systems will eventually face manufacturing challenges, which require the establishment of standardized processes to produce biologically-relevant products of high quality without incurring prohibitive cost. Microfluidicu technologies present many advantages to improve the quality of drug/gene/cell delivery systems. They also offer the benefits of automation. What remains unclear is whether they can meet the scale-up requirement. In this perspective, we discuss the advantages of microfluidic-assisted synthesis of nanoscale drug/gene delivery systems, formation of microscale drug/cell-encapsulated particles, generation of genetically engineered cells and fabrication of macroscale drug/cell-loaded micro-/nano-fibers. We also highlight the scale-up challenges one would face in adopting microfluidic technologies for the manufacturing of these therapeutic delivery systems.
Collapse