1
|
Gupta B, Kepros B, Landgraf JB, Becker MF, Li W, Purcell EK, Siegenthaler JR. All-Diamond Boron-Doped Microelectrodes for Neurochemical Sensing with Fast-Scan Cyclic Voltammetry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.07.606919. [PMID: 39211237 PMCID: PMC11360963 DOI: 10.1101/2024.08.07.606919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neurochemical sensing with implantable devices has gained remarkable attention over the last few decades. A promising area of this research is the progress of novel electrodes as electrochemical tools for neurotransmitter detection in the brain. The boron-doped diamond (BDD) electrode is one such candidate that previously has been reported for its excellent electrochemical properties, including a wide working potential, superior chemical inertness and mechanical stability, good biocompatibility and resistance to fouling. Meanwhile, limited research has been conducted on the BDD as a microelectrode for neurochemical detection. Our team has developed a freestanding, all diamond microelectrode consisting of a boron-doped polycrystalline diamond core, encapsulated in an insulating polycrystalline diamond shell, with a cleaved planar tip for electrochemical sensing. This all-diamond electrode is advantageous due to its - (1) batch fabrication using wafer technology that eliminates traditional hand fabrication errors and inconsistencies, (2) absence of metal-based wires, or foundations, to improve biocompatibility and flexibility, and (3) sp 3 carbon surface with resistance to biofouling, i.e. adsorption of proteins or unwanted molecules at the electrode surface in a biological environment that impedes overall electrode performance. Here, we provide findings on further in vitro testing and development of the freestanding boron-doped diamond microelectrode (BDDME) for neurotransmitter detection using fast scan cyclic voltammetry (FSCV). In this report, we elaborate on - 1) an updated fabrication scheme and work flow to generate all diamond BDDMEs, 2) slow scan cyclic voltammetry measurements of reference and target analytes to understand basic electrochemical behavior of the electrode, and 3) FSCV characterization of common neurotransmitters, and overall favorability of serotonin (5-HT) detection. The BDDME showed a 2-fold increased FSCV response for 5-HT in comparison to dopamine (DA), with a limit of detection of 0.16 µM for 5-HT and 0.26 µM for DA. These results are intended to expand on the development of the next generation BDDME and guide future in vivo experiments, adding to the growing body of literature on implantable devices for neurochemical sensing.
Collapse
|
2
|
Lucio Boschen S, Trevathan J, Hara SA, Asp A, Lujan JL. Defining a Path Toward the Use of Fast-Scan Cyclic Voltammetry in Human Studies. Front Neurosci 2021; 15:728092. [PMID: 34867151 PMCID: PMC8633532 DOI: 10.3389/fnins.2021.728092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Fast Scan Cyclic Voltammetry (FSCV) has been used for decades as a neurochemical tool for in vivo detection of phasic changes in electroactive neurotransmitters in animal models. Recently, multiple research groups have initiated human neurochemical studies using FSCV or demonstrated interest in bringing FSCV into clinical use. However, there remain technical challenges that limit clinical implementation of FSCV by creating barriers to appropriate scientific rigor and patient safety. In order to progress with clinical FSCV, these limitations must be first addressed through (1) appropriate pre-clinical studies to ensure accurate measurement of neurotransmitters and (2) the application of a risk management framework to assess patient safety. The intent of this work is to bring awareness of the current issues associated with FSCV to the scientific, engineering, and clinical communities and encourage them to seek solutions or alternatives that ensure data accuracy, rigor and reproducibility, and patient safety.
Collapse
Affiliation(s)
- Suelen Lucio Boschen
- Applied Computational Neurophysiology and Neuromodulation Laboratory, Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - James Trevathan
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Seth A Hara
- Division of Engineering, Mayo Clinic, Rochester, MN, United States
| | - Anders Asp
- Applied Computational Neurophysiology and Neuromodulation Laboratory, Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - J Luis Lujan
- Applied Computational Neurophysiology and Neuromodulation Laboratory, Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
3
|
Slopsema JP, Canna A, Uchenik M, Lehto LJ, Krieg J, Wilmerding L, Koski DM, Kobayashi N, Dao J, Blumenfeld M, Filip P, Min HK, Mangia S, Johnson MD, Michaeli S. Orientation-selective and directional deep brain stimulation in swine assessed by functional MRI at 3T. Neuroimage 2020; 224:117357. [PMID: 32916285 PMCID: PMC7783780 DOI: 10.1016/j.neuroimage.2020.117357] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022] Open
Abstract
Functional MRI (fMRI) has become an important tool for probing network-level effects of deep brain stimulation (DBS). Previous DBS-fMRI studies have shown that electrical stimulation of the ventrolateral (VL) thalamus can modulate sensorimotor cortices in a frequency and amplitude dependent manner. Here, we investigated, using a swine animal model, how the direction and orientation of the electric field, induced by VL-thalamus DBS, affects activity in the sensorimotor cortex. Adult swine underwent implantation of a novel 16-electrode (4 rows × 4 columns) directional DBS lead in the VL thalamus. A within-subject design was used to compare fMRI responses for (1) directional stimulation consisting of monopolar stimulation in four radial directions around the DBS lead, and (2) orientation-selective stimulation where an electric field dipole was rotated 0°−360° around a quadrangle of electrodes. Functional responses were quantified in the premotor, primary motor, and somatosensory cortices. High frequency electrical stimulation through leads implanted in the VL thalamus induced directional tuning in cortical response patterns to varying degrees depending on DBS lead position. Orientation-selective stimulation showed maximal functional response when the electric field was oriented approximately parallel to the DBS lead, which is consistent with known axonal orientations of the cortico-thalamocortical pathway. These results demonstrate that directional and orientation-selective stimulation paradigms in the VL thalamus can tune network-level modulation patterns in the sensorimotor cortex, which may have translational utility in improving functional outcomes of DBS therapy.
Collapse
Affiliation(s)
| | - Antonietta Canna
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota
| | | | - Lauri J Lehto
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota
| | - Jordan Krieg
- Department of Biomedical Engineering, University of Minnesota
| | | | - Dee M Koski
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota
| | - Naoharu Kobayashi
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota
| | - Joan Dao
- Department of Biomedical Engineering, University of Minnesota
| | | | - Pavel Filip
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota; Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | | | - Silvia Mangia
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota
| | - Matthew D Johnson
- Department of Biomedical Engineering, University of Minnesota; Institute for Translational Neuroscience, University of Minnesota
| | - Shalom Michaeli
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota.
| |
Collapse
|
4
|
Ou Y, Buchanan AM, Witt CE, Hashemi P. Frontiers in Electrochemical Sensors for Neurotransmitter Detection: Towards Measuring Neurotransmitters as Chemical Diagnostics for Brain Disorders. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2019; 11:2738-2755. [PMID: 32724337 PMCID: PMC7386554 DOI: 10.1039/c9ay00055k] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
It is extremely challenging to chemically diagnose disorders of the brain. There is hence great interest in designing and optimizing tools for direct detection of chemical biomarkers implicated in neurological disorders to improve diagnosis and treatment. Tools that are capable of monitoring brain chemicals, neurotransmitters in particular, need to be biocompatible, perform with high spatiotemporal resolution, and ensure high selectivity and sensitivity. Recent advances in electrochemical methods are addressing these criteria; the resulting devices demonstrate great promise for in vivo neurotransmitter detection. None of these devices are currently used for diagnostic purposes, however these cutting-edge technologies are promising more sensitive, selective, faster, and less invasive measurements. Via this review we highlight significant technical advances and in vivo studies, performed in the last 5 years, that we believe will facilitate the development of diagnostic tools for brain disorders.
Collapse
Affiliation(s)
- Yangguang Ou
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia SC
| | - Anna Marie Buchanan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia SC
| | - Colby E. Witt
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia SC
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia SC
| |
Collapse
|
5
|
Lee KH, Lujan JL, Trevathan JK, Ross EK, Bartoletta JJ, Park HO, Paek SB, Nicolai EN, Lee JH, Min HK, Kimble CJ, Blaha CD, Bennet KE. WINCS Harmoni: Closed-loop dynamic neurochemical control of therapeutic interventions. Sci Rep 2017; 7:46675. [PMID: 28452348 PMCID: PMC5408229 DOI: 10.1038/srep46675] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 03/24/2017] [Indexed: 01/24/2023] Open
Abstract
There has been significant progress in understanding the role of neurotransmitters in normal and pathologic brain function. However, preclinical trials aimed at improving therapeutic interventions do not take advantage of real-time in vivo neurochemical changes in dynamic brain processes such as disease progression and response to pharmacologic, cognitive, behavioral, and neuromodulation therapies. This is due in part to a lack of flexible research tools that allow in vivo measurement of the dynamic changes in brain chemistry. Here, we present a research platform, WINCS Harmoni, which can measure in vivo neurochemical activity simultaneously across multiple anatomical targets to study normal and pathologic brain function. In addition, WINCS Harmoni can provide real-time neurochemical feedback for closed-loop control of neurochemical levels via its synchronized stimulation and neurochemical sensing capabilities. We demonstrate these and other key features of this platform in non-human primate, swine, and rodent models of deep brain stimulation (DBS). Ultimately, systems like the one described here will improve our understanding of the dynamics of brain physiology in the context of neurologic disease and therapeutic interventions, which may lead to the development of precision medicine and personalized therapies for optimal therapeutic efficacy.
Collapse
Affiliation(s)
- Kendall H. Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, United States of America
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, United States of America
| | - J. Luis Lujan
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, United States of America
| | - James K. Trevathan
- Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Erika K. Ross
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, United States of America
| | - John J. Bartoletta
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Hyung Ook Park
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Seungleal Brian Paek
- Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Evan N. Nicolai
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Jannifer H. Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Hoon-Ki Min
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, United States of America
| | | | - Charles D. Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Kevin E. Bennet
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, United States of America
- Division of Engineering, Mayo Clinic, Rochester, MN 55905, United States of America
| |
Collapse
|
6
|
Cooper SE, Driesslein KG, Noecker AM, McIntyre CC, Machado AM, Butson CR. Anatomical targets associated with abrupt versus gradual washout of subthalamic deep brain stimulation effects on bradykinesia. PLoS One 2014; 9:e99663. [PMID: 25098453 PMCID: PMC4123847 DOI: 10.1371/journal.pone.0099663] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/19/2014] [Indexed: 11/18/2022] Open
Abstract
The subthalamic nucleus (STN) is a common anatomical target for deep brain stimulation (DBS) for the treatment of Parkinson’s disease. However, the effects of stimulation may spread beyond the STN. Ongoing research aims to identify nearby anatomical structures where DBS-induced effects could be associated with therapeutic improvement or side effects. We previously found that DBS lead location determines the rate – abrupt vs. gradual – with which therapeutic effect washes out after stimulation is stopped. Those results suggested that electrical current spreads from the electrodes to two spatially distinct stimulation targets associated with different washout rates. In order to identify these targets we used computational models to predict the volumes of tissue activated during DBS in 14 Parkinson’s patients from that study. We then coregistered each patient with a stereotaxic atlas and generated a probabilistic stimulation atlas to obtain a 3-dimensional representation of regions where stimulation was associated with abrupt vs. gradual washout. We found that the therapeutic effect which washed out gradually was associated with stimulation of the zona incerta and fields of Forel, whereas abruptly-disappearing therapeutic effect was associated with stimulation of STN itself. This supports the idea that multiple DBS targets exist and that current spread from one electrode may activate more than one of them in a given patient, producing a combination of effects which vary according to electrode location and stimulation settings.
Collapse
Affiliation(s)
- Scott E. Cooper
- Cleveland Clinic, Center for Neurological Restoration, Cleveland, Ohio, United States of America
- * E-mail:
| | - Klaus G. Driesslein
- Medical College of Wisconsin, Departments of Neurology & Neurosurgery, Biotechnology and Bioengineering Center, Milwaukee, Wisconsin, United States of America
| | - Angela M. Noecker
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States of America
| | - Cameron C. McIntyre
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States of America
| | - Andre M. Machado
- Cleveland Clinic, Center for Neurological Restoration, Cleveland, Ohio, United States of America
| | - Christopher R. Butson
- Medical College of Wisconsin, Departments of Neurology & Neurosurgery, Biotechnology and Bioengineering Center, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
7
|
Grahn PJ, Mallory GW, Khurram OU, Berry BM, Hachmann JT, Bieber AJ, Bennet KE, Min HK, Chang SY, Lee KH, Lujan JL. A neurochemical closed-loop controller for deep brain stimulation: toward individualized smart neuromodulation therapies. Front Neurosci 2014; 8:169. [PMID: 25009455 PMCID: PMC4070176 DOI: 10.3389/fnins.2014.00169] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/02/2014] [Indexed: 01/13/2023] Open
Abstract
Current strategies for optimizing deep brain stimulation (DBS) therapy involve multiple postoperative visits. During each visit, stimulation parameters are adjusted until desired therapeutic effects are achieved and adverse effects are minimized. However, the efficacy of these therapeutic parameters may decline with time due at least in part to disease progression, interactions between the host environment and the electrode, and lead migration. As such, development of closed-loop control systems that can respond to changing neurochemical environments, tailoring DBS therapy to individual patients, is paramount for improving the therapeutic efficacy of DBS. Evidence obtained using electrophysiology and imaging techniques in both animals and humans suggests that DBS works by modulating neural network activity. Recently, animal studies have shown that stimulation-evoked changes in neurotransmitter release that mirror normal physiology are associated with the therapeutic benefits of DBS. Therefore, to fully understand the neurophysiology of DBS and optimize its efficacy, it may be necessary to look beyond conventional electrophysiological analyses and characterize the neurochemical effects of therapeutic and non-therapeutic stimulation. By combining electrochemical monitoring and mathematical modeling techniques, we can potentially replace the trial-and-error process used in clinical programming with deterministic approaches that help attain optimal and stable neurochemical profiles. In this manuscript, we summarize the current understanding of electrophysiological and electrochemical processing for control of neuromodulation therapies. Additionally, we describe a proof-of-principle closed-loop controller that characterizes DBS-evoked dopamine changes to adjust stimulation parameters in a rodent model of DBS. The work described herein represents the initial steps toward achieving a “smart” neuroprosthetic system for treatment of neurologic and psychiatric disorders.
Collapse
Affiliation(s)
- Peter J Grahn
- Mayo Clinic College of Medicine, Mayo Clinic Rochester, MN, USA
| | - Grant W Mallory
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA
| | - Obaid U Khurram
- Mayo Clinic College of Medicine, Mayo Clinic Rochester, MN, USA
| | - B Michael Berry
- Mayo Clinic College of Medicine, Mayo Clinic Rochester, MN, USA
| | - Jan T Hachmann
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA
| | - Allan J Bieber
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA ; Department of Neurology, Mayo Clinic Rochester, MN, USA
| | - Kevin E Bennet
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA ; Division of Engineering, Mayo Clinic Rochester, MN, USA
| | - Hoon-Ki Min
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA ; Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, MN, USA
| | - Su-Youne Chang
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA ; Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, MN, USA
| | - J L Lujan
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA ; Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, MN, USA
| |
Collapse
|
8
|
Schluter EW, Mitz AR, Cheer JF, Averbeck BB. Real-time dopamine measurement in awake monkeys. PLoS One 2014; 9:e98692. [PMID: 24921937 PMCID: PMC4055617 DOI: 10.1371/journal.pone.0098692] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 05/07/2014] [Indexed: 11/23/2022] Open
Abstract
Fast-scan cyclic voltammetry (FSCV) is often used to measure real-time dopamine (DA) concentrations in awake, behaving rodents. Extending this technique to work in monkeys would provide a platform for advanced behavioral studies and a primate model for preclinical research. The present study demonstrates the feasibility of DA recordings in two awake monkeys (Macaca mulatta) using a mixture of techniques adapted from rodent, primate and brain slice work. We developed a long carbon fiber electrode to operate in the larger primate brain. This electrode was lowered into the striatum each day using a recording chamber and a detachable micromanipulator system. A manipulator also moved one or more tungsten stimulating electrodes into either the nearby striatum or the ventral tegmental area/substantia nigra pars compacta (VTA/SNc). We developed an electrical stimulation controller to reduce artifacts during electrical stimulation. We also introduce a stimulation-based methodology for estimating distances between electrodes in the brain. Dopamine responses within the striatum were evoked by either stimulation of the striatum near the FSCV electrode, or stimulation within the VTA/SNc. Unexpected juice rewards also evoked dopamine responses in the ventral striatum. Thus, we demonstrate that robust dopamine responses can be recorded from awake, behaving primates with FSCV. In addition, we describe how a stimulation technique borrowed from the neuroprosthetics field can activate the distributed monkey midbrain dopamine system in a way that mimics rodent VTA stimulation.
Collapse
Affiliation(s)
- Erik W. Schluter
- Laboratory of Neuropsychology, Division of Intramural Research, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andrew R. Mitz
- Laboratory of Neuropsychology, Division of Intramural Research, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joseph F. Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Bruno B. Averbeck
- Laboratory of Neuropsychology, Division of Intramural Research, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
9
|
Hebb AO, Zhang JJ, Mahoor MH, Tsiokos C, Matlack C, Chizeck HJ, Pouratian N. Creating the feedback loop: closed-loop neurostimulation. Neurosurg Clin N Am 2013; 25:187-204. [PMID: 24262909 DOI: 10.1016/j.nec.2013.08.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Current DBS therapy delivers a train of electrical pulses at set stimulation parameters. This open-loop design is effective for movement disorders, but therapy may be further optimized by a closed loop design. The technology to record biosignals has outpaced our understanding of their relationship to the clinical state of the whole person. Neuronal oscillations may represent or facilitate the cooperative functioning of brain ensembles, and may provide critical information to customize neuromodulation therapy. This review addresses advances to date, not of the technology per se, but of the strategies to apply neuronal signals to trigger or modulate stimulation systems.
Collapse
Affiliation(s)
- Adam O Hebb
- Colorado Neurological Institute, Department of Electrical and Computer Engineering, University of Denver, 499 E Hampden Ave Ste, 220 Englewood, CO 80113, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Kasasbeh A, Lee K, Bieber A, Bennet K, Chang SY. Wireless neurochemical monitoring in humans. Stereotact Funct Neurosurg 2013; 91:141-7. [PMID: 23445903 DOI: 10.1159/000345111] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 09/19/2012] [Indexed: 01/15/2023]
Abstract
Electrochemical techniques have long been utilized to investigate chemical changes in the neuronal microenvironment. Preclinical models have demonstrated the successful monitoring of changes in various neurotransmitter systems in vivo with high temporal and spatial resolution. The expansion of electrochemical recording to humans is a critical yet challenging goal to elucidate various aspects of human neurophysiology and to create future therapies. We have designed a novel device named the WINCS (Wireless Instantaneous Neurotransmitter Concentration Sensing) system that combines rapid scan voltammetry with wireless telemetry for highly resolved electrochemical recording and analysis. WINCS utilizes fast-scan cyclic voltammetry and fixed potential amperometry for in vivo recording and has demonstrated high temporal and spatial resolution in detecting changes in extracellular levels of a wide range of analytes including dopamine, adenosine, glutamate, serotonin, and histamine. Neurochemical monitoring in humans represents a new approach to understanding the neurophysiology of the central nervous system, the neurobiology of numerous diseases, and the underlying mechanism of various neurosurgical therapies. This article addresses the current understanding of electrochemistry, its application in humans, and future directions.
Collapse
Affiliation(s)
- Aimen Kasasbeh
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
11
|
Carbon nanofiber multiplexed array and Wireless Instantaneous Neurotransmitter Concentration Sensor for simultaneous detection of dissolved oxygen and dopamine. Biomed Eng Lett 2013; 2:271-277. [PMID: 24688800 DOI: 10.1007/s13534-012-0081-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
PURPOSE While the mechanism of Deep Brain Stimulation (DBS) remains poorly understood, previous studies have shown that it evokes release of neurochemicals and induces activation of functional magnetic resonance imaging (fMRI) blood oxygen level-dependent signal in distinct areas of the brain. Therefore, the main purpose of this paper is to demonstrate the capabilities of the Wireless Instantaneous Neurotransmitter Concentration Sensor system (WINCS) in conjunction with a carbon nanofiber (CNF) multiplexed array electrode as a powerful tool for elucidating the mechanism of DBS through the simultaneous detection of multiple bioactive-molecules. METHODS Patterned CNF nanoelectrode arrays were prepared on a 4-inch silicon wafer where each device consists of 3 × 3 electrode pads, 200 μm square, that contain CNFs spaced at 1μm intervals. The multiplexed carbon nanofiber CNF electrodes were integrated with WINCS to detect mixtures of dopamine (DA) and oxygen (O2) using fast scan cyclic voltammetry (FSCV) in vitro. RESULTS First, simultaneous detection of O2 at two spatially different locations, 200 um apart, was demonstrated. Second, simultaneous detection of both O2 and DA at two spatially different locations, using two different decoupled waveforms was demonstrated. Third, controlled studies demonstrated that the waveform must be interleaved to avoid electrode crosstalk artifacts in the acquired data. CONCLUSIONS Multiplexed CNF nanoelectrode arrays for electrochemical detection of neurotransmitters show promise for the detection of multiple analytes with the application of time independent decoupled waveforms. Electrochemistry on CNF electrodes may be helpful in elucidating the mechanism of DBS, and may also provide the precision and sensitivity required for future applications in feedback modulated DBS neural control systems.
Collapse
|
12
|
Multimodal imaging and image analysis techniques for neuromodulation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012. [PMID: 23206685 DOI: 10.1016/b978-0-12-404706-8.00012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Functional neurosurgical procedures used to treat the debilitating motor symptoms of Parkinson's disease and that target small subcortical structures have typically relied on semi-qualitative manual approaches that rely upon the establishing qualitative between volumetric imaging data and print atlases. This chapter reviews many new high -precision and -accuracy techniques that can be used for the full automated localization of these targets. These techniques rely on the a priori development of neuroanatomical atlases derived from magnetic resonance imaging data, high-resolution identification of subcortical structures from histology, and spatially localized data bases of intra-operative recordings and successful surgical outcomes. Other novel structural and functional MRI techniques that allow for the direct visualization of thalamic sub nuclei are also reviewed.
Collapse
|