1
|
Singh V, Gupta A, Sohal JS, Singh A, Bakshi S. Age induced interactions between heart rate variability and systolic blood pressure variability using approximate entropy and recurrence quantification analysis: a multiscale cross correlation analysis. Phys Eng Sci Med 2021; 44:497-510. [PMID: 33939105 DOI: 10.1007/s13246-021-01000-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
The purpose of this study is to study the effect of age on the correlation between heart rate variability (HRV) and blood pressure variability (BPV). To meet this end, multi-scale cross correlation (CC) analysis of HRV and systolic blood pressure variability (SBPV) was performed. The Approximate Entropy (ApEn) and Recurrence Quantification Analysis (RQA) derived indices, calculated from RR interval series (RRi) and systolic blood pressure (SBP) series at multiple temporal scales, are the basis of this CC analysis. For the computation of ApEn and RQA indices, the tolerance threshold (r) is chosen by either: (i) selecting any arbitrary value (0.2) within the recommended range (0.1-0.25) times standard deviation (SD) of time series, and (ii) taking the 'r' (ropt) corresponding to maximum ApEn (ApEnmax) as tolerance threshold. It is found that (i) at each time scale (τ), a lower SD is observed when indices are computed using ropt than [Formula: see text] (r0.2), for RRi as well as SBP series, (ii) descriptive indices of RRi are found significant (p < 0.05) at all scales (τ), however for SBP, these are found insignificant (p > 0.05) at most of the scales, (iii) CC values of descriptive statistics viz., mean and SD are not significant (p > 0.05) irrespective of τ, barring τ = 1, (iv) CC values of ApEn and RQA indices, found using ropt, are found significant (p < 0.05) and provide enhanced stratification at τ = 1, 2 and 3, whereas this significant correlation and strong classification is missing for indices calculated using r0.2, and (v) Lastly as τ increases, ApEn and RQA indices, computed with ropt, reverse their trend but manage to provide significant difference in elder and younger subjects. It is concluded that HRV and SBPV interactions gets altered with age. Descriptive indicators however are not enough to capture these changes. These complex interactions can only be deciphered using complexity-based methods such as approximate entropy and that too at the multiple scale level.
Collapse
Affiliation(s)
- Vikramjit Singh
- Department of Electronics and Communication Engineering, I K G Punjab Technical University, Jalandhar, Punjab, India.
| | - Amit Gupta
- Department of Electronics and Communication Engineering, I K G Punjab Technical University, Jalandhar, Punjab, India
| | - J S Sohal
- Ludhiana College of Engineering and Technology, Ludhiana, Punjab, India
| | | | - Surbhi Bakshi
- Department of Electrical Engineering, Chandigarh University, Mohali, India
| |
Collapse
|
2
|
Wright SE, Palmer C. Physiological and Behavioral Factors in Musicians' Performance Tempo. Front Hum Neurosci 2020; 14:311. [PMID: 33192375 PMCID: PMC7478117 DOI: 10.3389/fnhum.2020.00311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/14/2020] [Indexed: 11/13/2022] Open
Abstract
Musicians display individual differences in their spontaneous performance rates (tempo) for simple melodies, but the factors responsible are unknown. Previous research suggests that musical tempo modulates listeners' cardiovascular activity. We report an investigation of musicians' melody performances measured over a 12-h day and subsequent changes in the musicians' physiological activity. Skilled pianists completed four testing sessions in a single day as cardiac activity was recorded during an initial 5 min of baseline rest and during performances of familiar and unfamiliar melodies. Results indicated slower tempi for familiar and unfamiliar melodies at early testing times. Performance rates at 09 h were predicted by differences in participants' alertness and musical training; these differences were not explained by sleep patterns, chronotype, or cardiac activity. Individual differences in pianists' performance tempo were consistent across testing sessions: participants with a faster tempo at 09 h maintained a faster tempo at later testing sessions. Cardiac measures at early testing times indicated increased heart rates and more predictable cardiac dynamics during music performance than baseline rest, and during performances of unfamiliar melodies than familiar melodies. These findings provide the first evidence of cardiac dynamics that are unique to music performance contexts.
Collapse
Affiliation(s)
- Shannon E Wright
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Caroline Palmer
- Department of Psychology, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Papaioannou VE, Sertaridou EN, Chouvarda IG, Kolios GC, Pneumatikos IN. Determining rhythmicity and determinism of temperature curves in septic and non-septic critically ill patients through chronobiological and recurrence quantification analysis: a pilot study. Intensive Care Med Exp 2019; 7:53. [PMID: 31486940 PMCID: PMC6728111 DOI: 10.1186/s40635-019-0267-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/27/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND A few studies have demonstrated that critically ill patients exhibit circadian deregulation and reduced complexity of different time series, such as temperature. RESULTS In this prospective study, we enrolled 21 patients divided into three groups: group A (N = 10) included subjects who had septic shock at the time of ICU entry, group B (N = 6) included patients who developed septic shock during ICU stay, and group C consisted of 5 non-septic critically ill patients. Core body temperature (CBT) was recorded for 24 h at a rate of one sample per hour (average of CBT for that hour) and during different occasions: upon ICU entry and exit in groups A and C and upon entry, septic shock development, and exit in group B. Markers of circadian rhythmicity included mean values, amplitude that is the difference between peak and mean values, and peak time. Furthermore, recurrence quantification analysis (RQA) was employed for assessing different markers of complexity of temperature signals. Patients from group C exhibited higher temperature amplitude upon entry (0.45 ± 0.19) in relation with both groups A (0.28 ± 0.18, p < 0.05) and B (0.32 ± 0.13, p < 0.05). Circadian features did not differ within all groups. Temperature amplitude in groups B and C upon entry was negatively correlated with SAPS II (r = - 0.72 and - 0.84, p < 0.003) and APACHE II scores (r = - 0.70 and - 0.63, p < 0.003), respectively, as well as duration of ICU and hospital stay in group B (r = - 0.62 and - 0.64, p < 0.003) and entry SOFA score in group C (r = - 0.82, p < 0.003). Increased periodicity of CBT was found for all patients upon exit related to entry in the ICU. Different RQA features indicating periodic patterns of change of entry CBT were negatively correlated with severity of disease and length of ICU stay for all patients. CONCLUSIONS Increased temperature rhythmicity during ICU entry was related with lower severity of disease and better clinical outcomes, whereas the more deterministic CBT patterns were found in less critically ill patients with shorter ICU stay.
Collapse
Affiliation(s)
- Vasilios E Papaioannou
- Intensive Care Unit, Alexandroupolis University Hospital, Democritus University of Thrace, Dragana, 68100, Alexandroupolis, Greece
| | - Eleni N Sertaridou
- Intensive Care Unit, Alexandroupolis University Hospital, Democritus University of Thrace, Dragana, 68100, Alexandroupolis, Greece.
| | - Ioanna G Chouvarda
- Laboratory of Computing, Medical Informatics and Biomedical Imaging Technologies, Faculty of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - George C Kolios
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Dragana, 68100, Alexandroupolis, Greece
| | - Ioannis N Pneumatikos
- Intensive Care Unit, Alexandroupolis University Hospital, Democritus University of Thrace, Dragana, 68100, Alexandroupolis, Greece
| |
Collapse
|
4
|
Mashhadimalek M, Jafarnia Dabanloo N, Gharibzadeh S. Is It Possible to Determine the Level of Spiritual Well-Being by Measuring Heart Rate Variability During the Reading of Heavenly Books? Appl Psychophysiol Biofeedback 2019; 44:185-193. [DOI: 10.1007/s10484-019-09433-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Entropy Analysis for the Evaluation of Respiratory Changes Due to Asbestos Exposure and Associated Smoking. ENTROPY 2019; 21:e21030225. [PMID: 33266939 PMCID: PMC7514706 DOI: 10.3390/e21030225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 11/16/2022]
Abstract
Breathing is a complex rhythmic motor act, which is created by integrating different inputs to the respiratory centres. Analysing nonlinear fluctuations in breathing may provide clinically relevant information in patients with complex illnesses, such as asbestosis. We evaluated the effect of exposition to asbestos on the complexity of the respiratory system by investigating the respiratory impedance sample entropy (SampEnZrs) and recurrence period density entropy (RPDEnZrs). Similar analyses were performed by evaluating the airflow pattern sample entropy (SampEnV') and recurrence period density entropy (RPDEnV'). Groups of 34 controls and 34 asbestos-exposed patients were evaluated in the respiratory impedance entropy analysis, while groups of 34 controls and 30 asbestos-exposed patients were investigated in the analysis of airflow entropy. Asbestos exposition introduced a significant reduction of RPDEnV' in non-smoker patients (p < 0.0004), which suggests that the airflow pattern becomes less complex in these patients. Smoker patients also presented a reduction in RPDEnV' (p < 0.05). These finding are consistent with the reduction in respiratory system adaptability to daily life activities observed in these patients. It was observed a significant reduction in SampEnV' in smoker patients in comparison with non-smokers (p < 0.02). Diagnostic accuracy evaluations in the whole group of patients (including non-smokers and smokers) indicated that RPDEnV' might be useful in the diagnosis of respiratory abnormalities in asbestos-exposed patients, showing an accuracy of 72.0%. In specific groups of non-smokers, RPDEnV' also presented adequate accuracy (79.0%), while in smoker patients, SampEnV' and RPDEnV' presented adequate accuracy (70.7% and 70.2%, respectively). Taken together, these results suggest that entropy analysis may provide an early and sensitive functional indicator of interstitial asbestosis.
Collapse
|
6
|
Singh V, Gupta A, Sohal JS, Singh A. A unified non-linear approach based on recurrence quantification analysis and approximate entropy: application to the classification of heart rate variability of age-stratified subjects. Med Biol Eng Comput 2018; 57:741-755. [PMID: 30390223 DOI: 10.1007/s11517-018-1914-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/09/2018] [Indexed: 11/26/2022]
Abstract
This paper presents a unified approach based on the recurrence quantification analysis (RQA) and approximate entropy (ApEn) for the classification of heart rate variability (HRV). In this paper, the optimum tolerance threshold (ropt) corresponding to ApEnmax has been used for RQA calculation. The experimental data length (N) of RR interval series (RRi) is optimized by taking ropt as key parameter. ropt is found to be lying within the recommended range of 0.1 to 0.25 times the standard deviation of the RRi, when N ≥ 300. Consequently, RQA is applied to the age stratified RRi and indices such as percentage recurrence (%REC), percentage laminarity (%LAM), and percentage determinism (%DET) are calculated along with ApEnmax, [Formula: see text], [Formula: see text], and an index namely the radius differential (RD). Certain standard HRV statistical indices such as mean RR, standard deviation of RR (or NN) interval (SDNN), and the square root of the mean squared differences of successive RR intervals (RMSSD) (Eur Hear J 17:354-381, 1996) are also found for comparison. It is observed that (i) RD can discriminate between the elderly and young subjects with a value of 0.1151 ± 0.0236 (mean ± SD) and 0.0533 ± 0.0133 (mean ± SD) respectively for the elderly and young subjects and is found to be statistically significant with p < 0.05. (ii) Similar significant discrimination was obtained using [Formula: see text] with a value of 0.1827 ± 0.0382 (mean ± SD) and 0.2248 ± 0.0320 (mean ± SD) (iii) other significant indices were found to be %REC, %DET, %LAM, SDNN, and RMSSD; however, ApEnmax was found to be insignificant with p > 0.05. The above features of RRi time series were tested for classification using support vector machine (SVM) and multilayer perceptron neural network (MLPNN). Higher classification accuracy was achieved using SVM with a maximum value of 99.71%. Graphical abstract.
Collapse
Affiliation(s)
- Vikramjit Singh
- Department of Electronics and Communication Engineering, I K G Punjab Technical University, Jalandhar, Punjab, India.
| | - Amit Gupta
- Department of Electronics and Communication Engineering, I K G Punjab Technical University, Jalandhar, Punjab, India
| | - J S Sohal
- Ludhiana College of Engineering and Technology, Ludhiana, Punjab, India
| | - Amritpal Singh
- Department of Electrical Engineering, I K G Punjab Technical University, Jalandhar, Punjab, India
| |
Collapse
|
7
|
van Hunnik A, Zeemering S, Podziemski P, Simons J, Gatta G, Hannink L, Maesen B, Kuiper M, Verheule S, Schotten U. Stationary Atrial Fibrillation Properties in the Goat Do Not Entail Stable or Recurrent Conduction Patterns. Front Physiol 2018; 9:947. [PMID: 30100877 PMCID: PMC6072874 DOI: 10.3389/fphys.2018.00947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/28/2018] [Indexed: 12/04/2022] Open
Abstract
Introduction: Electro-anatomical mapping of the atria is used to identify the substrate of atrial fibrillation (AF). Targeting this substrate by ablation in addition to pulmonary vein ablation did not consistently improve outcome in clinical trials. Generally, the assessment of the substrate is based on short recordings (≤10 s, often even shorter). Thus, targeting the AF substrate assumes spatiotemporal stationarity but little is known about the variability of electrophysiological properties of AF over time. Methods: Atrial fibrillation (AF) was maintained for 3–4 weeks after pericardial electrode implantation in 12 goats. Within a single AF episode 10 consecutive minutes were mapped on the left atrial free wall using a 249-electrode array (2.25 mm inter-electrode spacing). AF cycle length, fractionation index (FI), lateral dissociation, conduction velocity, breakthroughs, and preferentiality of conduction (Pref) were assessed per electrode and AF property maps were constructed. The Pearson correlation coefficient (PCC) between the 10 AF-property maps was calculated to quantify the degree spatiotemporal stationarity of AF properties. Furthermore, the number of waves and presence of re-entrant circuits were analyzed in the first 60-s file. Comparing conduction patterns over time identified recurrent patterns of AF with the use of recurrence plots. Results: The averages of AF property maps were highly stable throughout the ten 60-s-recordings. Spatiotemporal stationarity was high for all 6 property maps, PCC ranged from 0.66 ± 0.11 for Pref to 0.98 ± 0.01 for FI. High stationarity was lost when AF was interrupted for about 1 h. However, the time delay between the recorded files within one episode did not affect PCC. Yet, multiple waves (7.7 ± 2.3) were present simultaneously within the recording area and during 9.2 ± 11% of the analyzed period a re-entrant circuit was observed. Recurrent patterns occurred rarely and were observed in only 3 out of 12 goats. Conclusions: During non-self-terminating AF in the goat, AF properties were stationary. Since this could not be attributed to stable recurrent conduction patterns during AF, it is suggested that AF properties are determined by anatomical and structural properties of the atria even when the conduction patterns are very variable.
Collapse
Affiliation(s)
- Arne van Hunnik
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Stef Zeemering
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Piotr Podziemski
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Jorik Simons
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Giulia Gatta
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Laura Hannink
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Bart Maesen
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Marion Kuiper
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Sander Verheule
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Ulrich Schotten
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
8
|
Arcentales A, Rivera P, Caminal P, Voss A, Bayes-Genis A, Giraldo BF. Analysis of blood pressure signal in patients with different ventricular ejection fraction using linear and non-linear methods. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:2700-2703. [PMID: 28268878 DOI: 10.1109/embc.2016.7591287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Changes in the left ventricle function produce alternans in the hemodynamic and electric behavior of the cardiovascular system. A total of 49 cardiomyopathy patients have been studied based on the blood pressure signal (BP), and were classified according to the left ventricular ejection fraction (LVEF) in low risk (LR: LVEF>35%, 17 patients) and high risk (HR: LVEF≤35, 32 patients) groups. We propose to characterize these patients using a linear and a nonlinear methods, based on the spectral estimation and the recurrence plot, respectively. From BP signal, we extracted each systolic time interval (STI), upward systolic slope (BPsl), and the difference between systolic and diastolic BP, defined as pulse pressure (PP). After, the best subset of parameters were obtained through the sequential feature selection (SFS) method. According to the results, the best classification was obtained using a combination of linear and nonlinear features from STI and PP parameters. For STI, the best combination was obtained considering the frequency peak and the diagonal structures of RP, with an area under the curve (AUC) of 79%. The same results were obtained when comparing PP values. Consequently, the use of combined linear and nonlinear parameters could improve the risk stratification of cardiomyopathy patients.
Collapse
|
9
|
Dhingra RR, Dutschmann M, Galán RF, Dick TE. Kölliker-Fuse nuclei regulate respiratory rhythm variability via a gain-control mechanism. Am J Physiol Regul Integr Comp Physiol 2016; 312:R172-R188. [PMID: 27974314 DOI: 10.1152/ajpregu.00238.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 11/14/2016] [Accepted: 12/11/2016] [Indexed: 11/22/2022]
Abstract
Respiration varies from breath to breath. On the millisecond timescale of spiking, neuronal circuits exhibit variability due to the stochastic properties of ion channels and synapses. Does this fast, microscopic source of variability contribute to the slower, macroscopic variability of the respiratory period? To address this question, we modeled a stochastic oscillator with forcing; then, we tested its predictions experimentally for the respiratory rhythm generated by the in situ perfused preparation during vagal nerve stimulation (VNS). Our simulations identified a relationship among the gain of the input, entrainment strength, and rhythm variability. Specifically, at high gain, the periodic input entrained the oscillator and reduced variability, whereas at low gain, the noise interacted with the input, causing events known as "phase slips", which increased variability on a slow timescale. Experimentally, the in situ preparation behaved like the low-gain model: VNS entrained respiration but exhibited phase slips that increased rhythm variability. Next, we used bilateral muscimol microinjections in discrete respiratory compartments to identify areas involved in VNS gain control. Suppression of activity in the nucleus tractus solitarii occluded both entrainment and amplification of rhythm variability by VNS, confirming that these effects were due to the activation of the Hering-Breuer reflex. Suppressing activity of the Kölliker-Fuse nuclei (KFn) enhanced entrainment and reduced rhythm variability during VNS, consistent with the predictions of the high-gain model. Together, the model and experiments suggest that the KFn regulates respiratory rhythm variability via a gain control mechanism.
Collapse
Affiliation(s)
- Rishi R Dhingra
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio.,Division of Pulmonary, Critical Care & Sleep, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Mathias Dutschmann
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia; and
| | - Roberto F Galán
- Department of Electrical Engineering and Computer Science, School of Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Thomas E Dick
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio; .,Division of Pulmonary, Critical Care & Sleep, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
10
|
Balocchi R, Varanini M, Paoletti G, Mecacci G, Santarcangelo EL. Paradoxical response to an emotional task: trait characteristics and heart-rate dynamics. Int J Clin Exp Hypn 2015; 63:182-97. [PMID: 25719521 DOI: 10.1080/00207144.2015.1002690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The present study evaluated the heart-rate dynamics of subjects reporting decreased (responders) or paradoxically increased relaxation (nonresponders) at the end of a threatening movie. Heart-rate dynamics were characterized by indices extracted through recurrence quantification analysis (RQA) and detrended fluctuation analysis (DFA). These indices were studied as a function of a few individual characteristics: hypnotizability, gender, absorption, anxiety, and the activity of the behavioral inhibition and activation systems (BIS/BAS). Results showed that (a) the subjective experience of responsiveness is associated with the activity of the behavioral inhibition system and (b) a few RQA and DFA indices are able to capture the influence of cognitive-emotional traits, including hypnotizability, on the responsiveness to the threatening task.
Collapse
Affiliation(s)
- Rita Balocchi
- a Institute of Clinical Physiology, National Research Council , Pisa , Italy
| | | | | | | | | |
Collapse
|
11
|
Seely AJE, Bravi A, Herry C, Green G, Longtin A, Ramsay T, Fergusson D, McIntyre L, Kubelik D, Maziak DE, Ferguson N, Brown SM, Mehta S, Martin C, Rubenfeld G, Jacono FJ, Clifford G, Fazekas A, Marshall J. Do heart and respiratory rate variability improve prediction of extubation outcomes in critically ill patients? Crit Care 2014; 18:R65. [PMID: 24713049 PMCID: PMC4057494 DOI: 10.1186/cc13822] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 03/05/2014] [Indexed: 11/17/2022] Open
Abstract
Introduction Prolonged ventilation and failed extubation are associated with increased harm and cost. The added value of heart and respiratory rate variability (HRV and RRV) during spontaneous breathing trials (SBTs) to predict extubation failure remains unknown. Methods We enrolled 721 patients in a multicenter (12 sites), prospective, observational study, evaluating clinical estimates of risk of extubation failure, physiologic measures recorded during SBTs, HRV and RRV recorded before and during the last SBT prior to extubation, and extubation outcomes. We excluded 287 patients because of protocol or technical violations, or poor data quality. Measures of variability (97 HRV, 82 RRV) were calculated from electrocardiogram and capnography waveforms followed by automated cleaning and variability analysis using Continuous Individualized Multiorgan Variability Analysis (CIMVA™) software. Repeated randomized subsampling with training, validation, and testing were used to derive and compare predictive models. Results Of 434 patients with high-quality data, 51 (12%) failed extubation. Two HRV and eight RRV measures showed statistically significant association with extubation failure (P <0.0041, 5% false discovery rate). An ensemble average of five univariate logistic regression models using RRV during SBT, yielding a probability of extubation failure (called WAVE score), demonstrated optimal predictive capacity. With repeated random subsampling and testing, the model showed mean receiver operating characteristic area under the curve (ROC AUC) of 0.69, higher than heart rate (0.51), rapid shallow breathing index (RBSI; 0.61) and respiratory rate (0.63). After deriving a WAVE model based on all data, training-set performance demonstrated that the model increased its predictive power when applied to patients conventionally considered high risk: a WAVE score >0.5 in patients with RSBI >105 and perceived high risk of failure yielded a fold increase in risk of extubation failure of 3.0 (95% confidence interval (CI) 1.2 to 5.2) and 3.5 (95% CI 1.9 to 5.4), respectively. Conclusions Altered HRV and RRV (during the SBT prior to extubation) are significantly associated with extubation failure. A predictive model using RRV during the last SBT provided optimal accuracy of prediction in all patients, with improved accuracy when combined with clinical impression or RSBI. This model requires a validation cohort to evaluate accuracy and generalizability. Trial registration ClinicalTrials.gov NCT01237886. Registered 13 October 2010.
Collapse
|
12
|
Kaczmarek J, Chawla S, Marchica C, Dwaihy M, Grundy L, Sant'Anna GM. Heart rate variability and extubation readiness in extremely preterm infants. Neonatology 2013; 104:42-8. [PMID: 23711487 DOI: 10.1159/000347101] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 01/02/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND Mechanical ventilation (MV) is associated with changes in autonomic nervous system activity in preterm infants, which can be assessed by measurements of heart rate variability (HRV). Decreased HRV has been described in adults undergoing disconnection from MV; such information is not available in preterm infants. OBJECTIVE To compare differences in HRV between infants successfully extubated and those who failed, and to evaluate the accuracy of HRV as a predictor of extubation readiness. METHODS This is a prospective, observational study of infants with a birth weight ≤1,250 g undergoing their first extubation attempt. Heart rate was measured during a 60-min period immediately prior to extubation and HRV was calculated using the frequency domain analysis. RESULTS A total of 47 infants were studied; 36 were successfully extubated and 11 reintubated. There were no differences in patient demographics, ventilator settings, blood gases or postextubation management between the groups. All components of the HRV analysis were significantly decreased in infants who failed, generating high areas under the receiver operating characteristic curve. The specificity and positive predictive values were 100, but with limited sensitivity and negative predictive values. CONCLUSIONS Infants considered 'ready to be extubated' but who subsequently failed their first extubation attempt had decreased HRV prior to extubation. Though promising, the value of HRV as a predictor of extubation readiness requires further evaluation.
Collapse
Affiliation(s)
- Jennifer Kaczmarek
- Division of Neonatology, Department of Pediatrics, McGill University, Montreal, Que., Canada
| | | | | | | | | | | |
Collapse
|