1
|
Wilcox S, Sengupta S, Huang C, Tokuda J, Lu A, Woodrum D, Chen Y. Development of a Low-Profile, Piezoelectric Robot for MR-Guided Abdominal Needle Interventions. Ann Biomed Eng 2025:10.1007/s10439-025-03719-w. [PMID: 40266438 DOI: 10.1007/s10439-025-03719-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/25/2025] [Indexed: 04/24/2025]
Abstract
PURPOSE Minimally invasive needle-based interventions are commonly used in cancer diagnosis and treatment, including procedures, such as biopsy, brachytherapy, and microwave ablation. Although MR-guided needle placement offers several distinct advantages, such as high-resolution target visualization and accurate device tracking, one of the primary limitations that affect its widespread adoption is the ergonomic constraints of the closed-bore MRI environment, requiring the patients to be frequently moved in and out to perform the needle-based procedures. This paper introduces a low-profile, body-mounted, MR-guided robot designed to address this limitation by streamlining the operation workflow and enabling accurate needle placement within the MRI scanner. METHODS The robot employs piezoelectric linear actuators and stacked Cartesian XY stages to precisely control the position and orientation of a needle guide. A kinematic model and control framework was developed to facilitate accurate targeting. Additionally, clinical workflow for the liver interventions was developed to demonstrate the robot's capability to replicate existing procedures. The proposed system was validated in benchtop environment and 3T MRI scanner to quantify the system performance. RESULTS Experimental validations conducted in free space demonstrated a position accuracy of 2.38 ± 0.94 mm and orientation error of 1.40 ± 2.89°. Additional tests to confirm MR-conditionality and MR-guided phantom placements were carried out to assess the system's performance and safety in MRI suite, yielding a position error of 2.01 ± 0.77 mm and an orientation error of 1.57 ± 1.31°. CONCLUSION The presented robot shows exceptional compatibility with a wide range of patients and bore sizes while maintaining clinically significant accuracy. Future work will focus on the validations in dynamic liver environments.
Collapse
Affiliation(s)
- Samuel Wilcox
- Institute of Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, 30332, USA
| | - Saikat Sengupta
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Chuan Huang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Junichi Tokuda
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Aiming Lu
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - David Woodrum
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yue Chen
- Institute of Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, 30332, USA.
| |
Collapse
|
2
|
Duan B, Jia B, Wang C, Chen S, Xu J, Teng GJ. Optimization of percutaneous intervention robotic system for skin insertion force. Int J Comput Assist Radiol Surg 2025; 20:345-355. [PMID: 39514174 DOI: 10.1007/s11548-024-03274-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 09/11/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Percutaneous puncture is a common interventional procedure, and its effectiveness is influenced by the insertion force of the needle. To optimize outcomes, we focus on reducing the peak force of the needle in the skin, aiming to apply this method to other tissue layers. METHODS We developed a clinical puncture system, setting and measuring various variables. We analyzed their effects, introduced admittance control, set thresholds, and adjusted parameters. Finally, we validated these methods to ensure their effectiveness. RESULTS Our system meets application requirements. We assessed the impact of various variables on peak force and validated the effectiveness of the new method. Results show a reduction of about 50% in peak force compared to the maximum force condition and about 13% compared to the minimum force condition. Finally, we summarized the factors to consider when applying this method. CONCLUSION To achieve peak force suppression, initial puncture variables should be set based on the trends in variable impact. Additionally, the factors of the new method should be introduced using these initial settings. When selecting these factors, the characteristics of the new method must also be considered. This process will help to better optimize peak puncture force.
Collapse
Affiliation(s)
- Benfang Duan
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Biao Jia
- Hanglok-Tech Co., Ltd., Hengqin, 519000, China
| | - Cheng Wang
- Hanglok-Tech Co., Ltd., Hengqin, 519000, China
| | - Shijia Chen
- Hanglok-Tech Co., Ltd., Hengqin, 519000, China
| | - Jun Xu
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Gao-Jun Teng
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
3
|
Liu D, Li G, Wang S, Liu Z, Wang Y, Connolly L, Usevitch D, Shen G, Cleary K, Iordachita I. A magnetic resonance conditional robot for lumbar spinal injection: Development and preliminary validation. Int J Med Robot 2024; 20:e2618. [PMID: 38536711 PMCID: PMC10982612 DOI: 10.1002/rcs.2618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 04/04/2024]
Abstract
PURPOSE This work presents the design and preliminary validation of a Magnetic Resonance (MR) conditional robot for lumbar injection for the treatment of lower back pain. METHODS This is a 4-degree-of-freedom (DOF) robot that is 200 × 230 × 130 mm3 in volume and has a mass of 0.8 kg. Its lightweight and compact features allow it to be directly affixed to patient's back, establishing a rigid connection, thus reducing positional errors caused by patient movements during treatment. RESULTS To validate the positioning accuracy of the needle by the robot, an electromagnetic (EM) tracking system and a needle with an EM sensor embedded in the tip were used for the free space evaluation with position accuracy of 0.88 ± 0.46 mm and phantom mock insertions using the Loop-X CBCT scanner with target position accuracy of 3.62 ± 0.92 mm. CONCLUSION Preliminary experiments demonstrated that the proposed robot showed improvements and benefits in its rotation range, flexible needle adjustment, and sensor protection compared with previous and existing systems, offering broader clinical applications.
Collapse
Affiliation(s)
- Depeng Liu
- Whiting School of Engineering, Johns Hopkins University, Baltimore, US
| | - Gang Li
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington DC, US
| | - Shuyuan Wang
- Whiting School of Engineering, Johns Hopkins University, Baltimore, US
| | - Zixuan Liu
- Whiting School of Engineering, Johns Hopkins University, Baltimore, US
| | - Yanzhou Wang
- Whiting School of Engineering, Johns Hopkins University, Baltimore, US
| | - Laura Connolly
- The Department of Electrical and Computer Engineering, Queen’s University, Kingston, Canada
| | - David Usevitch
- Whiting School of Engineering, Johns Hopkins University, Baltimore, US
| | - Guofeng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Kevin Cleary
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington DC, US
| | - Iulian Iordachita
- Whiting School of Engineering, Johns Hopkins University, Baltimore, US
| |
Collapse
|
4
|
Su H, Kwok KW, Cleary K, Iordachita I, Cavusoglu MC, Desai JP, Fischer GS. State of the Art and Future Opportunities in MRI-Guided Robot-Assisted Surgery and Interventions. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2022; 110:968-992. [PMID: 35756185 PMCID: PMC9231642 DOI: 10.1109/jproc.2022.3169146] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Magnetic resonance imaging (MRI) can provide high-quality 3-D visualization of target anatomy, surrounding tissue, and instrumentation, but there are significant challenges in harnessing it for effectively guiding interventional procedures. Challenges include the strong static magnetic field, rapidly switching magnetic field gradients, high-power radio frequency pulses, sensitivity to electrical noise, and constrained space to operate within the bore of the scanner. MRI has a number of advantages over other medical imaging modalities, including no ionizing radiation, excellent soft-tissue contrast that allows for visualization of tumors and other features that are not readily visible by other modalities, true 3-D imaging capabilities, including the ability to image arbitrary scan plane geometry or perform volumetric imaging, and capability for multimodality sensing, including diffusion, dynamic contrast, blood flow, blood oxygenation, temperature, and tracking of biomarkers. The use of robotic assistants within the MRI bore, alongside the patient during imaging, enables intraoperative MR imaging (iMRI) to guide a surgical intervention in a closed-loop fashion that can include tracking of tissue deformation and target motion, localization of instrumentation, and monitoring of therapy delivery. With the ever-expanding clinical use of MRI, MRI-compatible robotic systems have been heralded as a new approach to assist interventional procedures to allow physicians to treat patients more accurately and effectively. Deploying robotic systems inside the bore synergizes the visual capability of MRI and the manipulation capability of robotic assistance, resulting in a closed-loop surgery architecture. This article details the challenges and history of robotic systems intended to operate in an MRI environment and outlines promising clinical applications and associated state-of-the-art MRI-compatible robotic systems and technology for making this possible.
Collapse
Affiliation(s)
- Hao Su
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 USA
| | - Ka-Wai Kwok
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong
| | - Kevin Cleary
- Children's National Health System, Washington, DC 20010 USA
| | - Iulian Iordachita
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD 21218 USA
| | - M Cenk Cavusoglu
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Jaydev P Desai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Gregory S Fischer
- Department of Robotics Engineering, Worcester Polytechnic Institute, Worcester, MA 01609 USA
| |
Collapse
|
5
|
Li G, Patel NA, Hagemeister J, Yan J, Wu D, Sharma K, Cleary K, Iordachita I. Body-mounted robotic assistant for MRI-guided low back pain injection. Int J Comput Assist Radiol Surg 2020; 15:321-331. [PMID: 31625021 PMCID: PMC7027988 DOI: 10.1007/s11548-019-02080-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/04/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE This paper presents the development of a body-mounted robotic assistant for magnetic resonance imaging (MRI)-guided low back pain injection. Our goal was to eliminate the radiation exposure of traditional X-ray guided procedures while enabling the exquisite image quality available under MRI. The robot is designed with a compact and lightweight profile that can be mounted directly on the patient's lower back via straps, thus minimizing the effect of patient motion by moving along with the patient. The robot was built with MR-conditional materials and actuated with piezoelectric motors so it can operate inside the MRI scanner bore during imaging and therefore streamline the clinical workflow by utilizing intraoperative MR images. METHODS The robot is designed with a four degrees of freedom parallel mechanism, stacking two identical Cartesian stages, to align the needle under intraoperative MRI-guidance. The system targeting accuracy was first evaluated in free space with an optical tracking system, and further assessed with a phantom study under live MRI-guidance. Qualitative imaging quality evaluation was performed on a human volunteer to assess the image quality degradation caused by the robotic assistant. RESULTS Free space positioning accuracy study demonstrated that the mean error of the tip position to be [Formula: see text] mm and needle angle to be [Formula: see text]. MRI-guided phantom study indicated the mean errors of the target to be [Formula: see text] mm, entry point to be [Formula: see text] mm, and needle angle to be [Formula: see text]. Qualitative imaging quality evaluation validated that the image degradation caused by the robotic assistant in the lumbar spine anatomy is negligible. CONCLUSIONS The study demonstrates that the proposed body-mounted robotic system is able to perform MRI-guided low back injection in a phantom study with sufficient accuracy and with minimal visible image degradation that should not affect the procedure.
Collapse
Affiliation(s)
- Gang Li
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, USA.
| | - Niravkumar A Patel
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, USA
| | - Jan Hagemeister
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, USA
| | - Jiawen Yan
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, USA
| | - Di Wu
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, USA
| | - Karun Sharma
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA
| | - Kevin Cleary
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA
| | - Iulian Iordachita
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
6
|
Yan J, Patel N, Li G, Wu D, Cleary K, Iordachita I. Body-Mounted MRI-Conditional Parallel Robot for Percutaneous Interventions Structural Improvement, Calibration, and Accuracy Analysis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:1990-1993. [PMID: 31946290 DOI: 10.1109/embc.2019.8857667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To assist in percutaneous interventions in the lower back under magnetic resonance imaging guidance, a 4 degree-of-freedom body-mounted parallel robot is developed. The robot structure is improved comparatively to a previously developed robot, to increase the stability, enhance accuracy, and streamline the assembly and calibration process. The optimized assembly and calibration workflows are carried out, and the system accuracy is evaluated. The results demonstrate that the system positioning and angular accuracy are 2.28±1.1 mm and 1.94±1.01 degrees respectively. The results show that the new system has a promising and consistent behavior.
Collapse
|
7
|
Wu D, Li G, Patel N, Yan J, Kim GH, Monfaredi R, Cleary K, Iordachita I. Remotely Actuated Needle Driving Device for MRI-Guided Percutaneous Interventions: Force and Accuracy Evaluation .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:1985-1989. [PMID: 31946289 DOI: 10.1109/embc.2019.8857260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This paper presents a 2 degrees-of-freedom (DOF) remotely actuated needle driving device for Magnetic Resonance Imaging (MRI) guided pain injections. The device is evaluated in phantom studies under real-time MRI guidance. The force and torque asserted by the device on the 4-DOF base robot are measured. The needle driving device consists of a needle driver, a 1.2-meter long beaded chain transmission, an actuation box, a robot controller and a Graphical User Interface (GUI). The needle driver can fit within a typical MRI scanner bore and is remotely actuated at the end of the MRI table through a novel beaded chain transmission. The remote actuation mechanism significantly reduces the weight and size of the needle driver at the patient end as well as the artifacts introduced by the motors. The clinician can manually steer the needle by rotating the knobs on the actuation box or remotely through a software interface in the MRI console room. The force and torque resulting from the needle driver in various configurations both in static and dynamic status were measured and reported. An accuracy experiment in the MRI environment under real-time image feedback demonstrates a small mean targeting error (<; 1.5 mm) in a phantom study.
Collapse
|