1
|
Hussain M, Jaffar-Karballai M, Kayali F, Jubouri M, Surkhi AO, Bashir M, Murtada A. How robotic platforms are revolutionizing colorectal surgery techniques: a comparative review. Expert Rev Med Devices 2025:1-17. [PMID: 40156458 DOI: 10.1080/17434440.2025.2486481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/10/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
INTRODUCTION In the last two decades, robotic technology has fundamentally transformed the field of colorectal surgery by providing surgeons with unprecedented levels of precision and control. Nevertheless, robotic surgery presents certain challenges such as prolonged operating times, high costs, limited accessibility, and the necessity for specialized training. AREAS COVERED This comparative review analyzes the impact of robotic platforms on colorectal surgery and its outcomes, with the expanding market of this technology. The major databases including PubMed, Scopus, and Google Scholars were searched using the key term 'robotic assisted surgery,' 'robotic platforms,' and 'colorectal surgery' to identify relevant articles as of August 2024. The most utilized robotic platforms currently available on the market - Da Vinci, Versius, Senhance, and Revo-I - are compared through their peri- and post-operative outcomes, including operative duration, blood loss, hospitalization period, oncological outcomes, and cost, providing a comprehensive insight into the future of robotic-assisted colorectal surgery. EXPERT OPINION Robotic surgery significantly improves patient outcomes, including shorter postoperative recovery times and effective cancer resection margins. However, challenges faced with these platforms include longer intraoperative times, arm clashing, the need for bedside assistance, and cost. Nevertheless, with the evolution toward managing more complex rectal cancer cases and more challenging dissection planes, the need for robotic platforms will only grow.
Collapse
Affiliation(s)
| | | | - Fatima Kayali
- Department of Medicine, Royal Liverpool University Hospital Trust, Liverpool, UK
| | - Matti Jubouri
- Hull York Medical School, University of York, York, UK
| | | | - Mohamad Bashir
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Ali Murtada
- Department of General Surgery, Betsi Cadwaladr University Health Board, Rhyl, UK
| |
Collapse
|
2
|
郝 定. [Brief history and application prospect of robotic spine surgery]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:899-903. [PMID: 39175308 PMCID: PMC11335596 DOI: 10.7507/1002-1892.202406089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024]
Abstract
Spinal robotics has rounded out twenty years in clinical, is mainly used for pedicle screw placement at present, can significantly increase the accuracy of screw placement and reduce radiation exposure to the patient and the surgeon. In the future, haptic feedback, automatic collision avoidance, and other technologies will further expand its application to complete precise operations such as decompression and correction, providing safety guarantee for the implementation of complex spinal surgery.
Collapse
Affiliation(s)
- 定均 郝
- 西安交通大学附属红会医院脊柱外科(西安 710054)Department of Spine Surgery, Xi’an Jiaotong University Affiliated Honghui Hospital, Xi’an Shaanxi, 710054, P. R. China
| |
Collapse
|
3
|
Bekbolatova M, Mayer J, Ong CW, Toma M. Transformative Potential of AI in Healthcare: Definitions, Applications, and Navigating the Ethical Landscape and Public Perspectives. Healthcare (Basel) 2024; 12:125. [PMID: 38255014 PMCID: PMC10815906 DOI: 10.3390/healthcare12020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Artificial intelligence (AI) has emerged as a crucial tool in healthcare with the primary aim of improving patient outcomes and optimizing healthcare delivery. By harnessing machine learning algorithms, natural language processing, and computer vision, AI enables the analysis of complex medical data. The integration of AI into healthcare systems aims to support clinicians, personalize patient care, and enhance population health, all while addressing the challenges posed by rising costs and limited resources. As a subdivision of computer science, AI focuses on the development of advanced algorithms capable of performing complex tasks that were once reliant on human intelligence. The ultimate goal is to achieve human-level performance with improved efficiency and accuracy in problem-solving and task execution, thereby reducing the need for human intervention. Various industries, including engineering, media/entertainment, finance, and education, have already reaped significant benefits by incorporating AI systems into their operations. Notably, the healthcare sector has witnessed rapid growth in the utilization of AI technology. Nevertheless, there remains untapped potential for AI to truly revolutionize the industry. It is important to note that despite concerns about job displacement, AI in healthcare should not be viewed as a threat to human workers. Instead, AI systems are designed to augment and support healthcare professionals, freeing up their time to focus on more complex and critical tasks. By automating routine and repetitive tasks, AI can alleviate the burden on healthcare professionals, allowing them to dedicate more attention to patient care and meaningful interactions. However, legal and ethical challenges must be addressed when embracing AI technology in medicine, alongside comprehensive public education to ensure widespread acceptance.
Collapse
Affiliation(s)
- Molly Bekbolatova
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Jonathan Mayer
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Chi Wei Ong
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Milan Toma
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| |
Collapse
|
4
|
Sone K, Tanimoto S, Toyohara Y, Taguchi A, Miyamoto Y, Mori M, Iriyama T, Wada-Hiraike O, Osuga Y. Evolution of a surgical system using deep learning in minimally invasive surgery (Review). Biomed Rep 2023; 19:45. [PMID: 37324165 PMCID: PMC10265572 DOI: 10.3892/br.2023.1628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/31/2023] [Indexed: 06/17/2023] Open
Abstract
Recently, artificial intelligence (AI) has been applied in various fields due to the development of new learning methods, such as deep learning, and the marked progress in computational processing speed. AI is also being applied in the medical field for medical image recognition and omics analysis of genomes and other data. Recently, AI applications for videos of minimally invasive surgeries have also advanced, and studies on such applications are increasing. In the present review, studies that focused on the following topics were selected: i) Organ and anatomy identification, ii) instrument identification, iii) procedure and surgical phase recognition, iv) surgery-time prediction, v) identification of an appropriate incision line, and vi) surgical education. The development of autonomous surgical robots is also progressing, with the Smart Tissue Autonomous Robot (STAR) and RAVEN systems being the most reported developments. STAR, in particular, is currently being used in laparoscopic imaging to recognize the surgical site from laparoscopic images and is in the process of establishing an automated suturing system, albeit in animal experiments. The present review examined the possibility of fully autonomous surgical robots in the future.
Collapse
Affiliation(s)
- Kenbun Sone
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Saki Tanimoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yusuke Toyohara
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yuichiro Miyamoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Mayuyo Mori
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takayuki Iriyama
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
5
|
Frank A, Heiliger C, Andrade D, Karcz K. Bedeutung der künstlichen Intelligenz für die computergestützte Chirurgie. Zentralbl Chir 2022; 147:215-219. [PMID: 35705081 DOI: 10.1055/a-1787-0636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Alexander Frank
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Klinikum der LMU München - Campus Großhadern, München, Deutschland
| | - Christian Heiliger
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Klinikum der LMU München - Campus Großhadern, München, Deutschland
| | - Dorian Andrade
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Klinikum der LMU München - Campus Großhadern, München, Deutschland
| | - Konrad Karcz
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Klinikum der LMU München - Campus Großhadern, München, Deutschland
| |
Collapse
|
6
|
Asai A, Konno M, Taniguchi M, Vecchione A, Ishii H. Computational healthcare: Present and future perspectives (Review). Exp Ther Med 2021; 22:1351. [PMID: 34659497 PMCID: PMC8515560 DOI: 10.3892/etm.2021.10786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/19/2021] [Indexed: 12/05/2022] Open
Abstract
Artificial intelligence (AI) has been developed through repeated new discoveries since around 1960. The use of AI is now becoming widespread within society and our daily lives. AI is also being introduced into healthcare, such as medicine and drug development; however, it is currently biased towards specific domains. The present review traces the history of the development of various AI-based applications in healthcare and compares AI-based healthcare with conventional healthcare to show the future prospects for this type of care. Knowledge of the past and present development of AI-based applications would be useful for the future utilization of novel AI approaches in healthcare.
Collapse
Affiliation(s)
- Ayumu Asai
- Center of Medical Innovation and Translational Research, Department of Medical Data Science, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Artificial Intelligence Research Center, Osaka University, Ibaraki, Osaka 567-0047, Japan.,The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Masamitsu Konno
- Center of Medical Innovation and Translational Research, Department of Medical Data Science, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masateru Taniguchi
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, University of Rome 'Sapienza', Santo Andrea Hospital, I-1035-00189 Rome, Italy
| | - Hideshi Ishii
- Center of Medical Innovation and Translational Research, Department of Medical Data Science, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Kam M, Saeidi H, Hsieh MH, Kang JU, Krieger A. A Confidence-Based Supervised-Autonomous Control Strategy for Robotic Vaginal Cuff Closure. IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION : ICRA : [PROCEEDINGS]. IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION 2021; 2021:10.1109/icra48506.2021.9561685. [PMID: 34840856 PMCID: PMC8612028 DOI: 10.1109/icra48506.2021.9561685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Autonomous robotic suturing has the potential to improve surgery outcomes by leveraging accuracy, repeatability, and consistency compared to manual operations. However, achieving full autonomy in complex surgical environments is not practical and human supervision is required to guarantee safety. In this paper, we develop a confidence-based supervised autonomous suturing method to perform robotic suturing tasks via both Smart Tissue Autonomous Robot (STAR) and surgeon collaboratively with the highest possible degree of autonomy. Via the proposed method, STAR performs autonomous suturing when highly confident and otherwise asks the operator for possible assistance in suture positioning adjustments. We evaluate the accuracy of our proposed control method via robotic suturing tests on synthetic vaginal cuff tissues and compare them to the results of vaginal cuff closures performed by an experienced surgeon. Our test results indicate that by using the proposed confidence-based method, STAR can predict the success of pure autonomous suture placement with an accuracy of 94.74%. Moreover, via an additional 25% human intervention, STAR can achieve a 98.1% suture placement accuracy compared to an 85.4% accuracy of completely autonomous robotic suturing. Finally, our experiment results indicate that STAR using the proposed method achieves 1.6 times better consistency in suture spacing and 1.8 times better consistency in suture bite sizes than the manual results.
Collapse
Affiliation(s)
- Michael Kam
- Dep. of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21211, USA
| | - Hamed Saeidi
- Dep. of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21211, USA
| | - Michael H Hsieh
- Dep. of Urology, Children's National Hospital, 111 Michigan Ave. N.W., Washington, DC 20010, USA
| | - J U Kang
- Dep. of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21211, USA
| | - Axel Krieger
- Dep. of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21211, USA
| |
Collapse
|
8
|
Abstract
The advent of telerobotic systems has revolutionized various aspects of the industry and human life. This technology is designed to augment human sensorimotor capabilities to extend them beyond natural competence. Classic examples are space and underwater applications when distance and access are the two major physical barriers to be combated with this technology. In modern examples, telerobotic systems have been used in several clinical applications, including teleoperated surgery and telerehabilitation. In this regard, there has been a significant amount of research and development due to the major benefits in terms of medical outcomes. Recently telerobotic systems are combined with advanced artificial intelligence modules to better share the agency with the operator and open new doors of medical automation. In this review paper, we have provided a comprehensive analysis of the literature considering various topologies of telerobotic systems in the medical domain while shedding light on different levels of autonomy for this technology, starting from direct control, going up to command-tracking autonomous telerobots. Existing challenges, including instrumentation, transparency, autonomy, stochastic communication delays, and stability, in addition to the current direction of research related to benefit in telemedicine and medical automation, and future vision of this technology, are discussed in this review paper.
Collapse
|
9
|
The automaton as a surgeon: the future of artificial intelligence in emergency and general surgery. Eur J Trauma Emerg Surg 2020; 47:757-762. [DOI: 10.1007/s00068-020-01444-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022]
|
10
|
Saeidi H, Ge J, Kam M, Opfermann JD, Leonard S, Joshi AS, Krieger A. Supervised Autonomous Electrosurgery via Biocompatible Near-Infrared Tissue Tracking Techniques. IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS 2019; 1:228-236. [PMID: 33458603 PMCID: PMC7810241 DOI: 10.1109/tmrb.2019.2949870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Autonomous robotic surgery systems aim to improve patient outcomes by leveraging the repeatability and consistency of automation and also reducing human induced errors. However, intraoperative autonomous soft tissue tracking and robot control still remains a challenge due to the lack of structure, and high deformability of such tissues. In this paper, we take advantage of biocompatible Near-Infrared (NIR) marking methods and develop a supervised autonomous 3D path planning, filtering, and control strategy for our Smart Tissue Autonomous Robot (STAR) to enable precise and consistent incisions on complex 3D soft tissues. Our experimental results on cadaver porcine tongue samples indicate that the proposed strategy reduces surface incision error and depth incision error by 40.03% and 51.5%, respectively, compared to a teleoperation strategy via da Vinci. Furthermore, compared to an autonomous path planning method with linear interpolation between the NIR markers, the proposed strategy reduces the incision depth error by 48.58% by taking advantage of 3D tissue surface information.
Collapse
Affiliation(s)
- H. Saeidi
- Mechanical Engineering Department, University of Maryland, College Park, MD 20742, USA., Fischell Institute for Biomedical Devices and the Marlene and Stewart Greenebaum Cancer Center
| | - J. Ge
- Mechanical Engineering Department, University of Maryland, College Park, MD 20742, USA., Fischell Institute for Biomedical Devices and the Marlene and Stewart Greenebaum Cancer Center
| | - M. Kam
- Mechanical Engineering Department, University of Maryland, College Park, MD 20742, USA., Fischell Institute for Biomedical Devices and the Marlene and Stewart Greenebaum Cancer Center
| | - J. D. Opfermann
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Childrens National Health System, 111 Michigan Ave. N.W., Washington, DC 20010
| | - S. Leonard
- Electrical and Computer Science Eng. Dept., Johns Hopkins University, Baltimore, MD 21211
| | - A. S. Joshi
- Division of Otolaryngology - Head & Neck Surgery at The George Washington University Medical Faculty Associates, 2300 M St. NW 4th Floor, Washington DC 20037
| | - A. Krieger
- Mechanical Engineering Department, University of Maryland, College Park, MD 20742, USA., Fischell Institute for Biomedical Devices and the Marlene and Stewart Greenebaum Cancer Center
| |
Collapse
|