1
|
Xia J, Wang F, Wang Y, Wang L, Li G. Longitudinal mapping of the development of cortical thickness and surface area in rhesus macaques during the first three years. Proc Natl Acad Sci U S A 2023; 120:e2303313120. [PMID: 37523547 PMCID: PMC10410744 DOI: 10.1073/pnas.2303313120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023] Open
Abstract
Studying dynamic spatiotemporal patterns of early brain development in macaque monkeys is critical for understanding the cortical organization and evolution in humans, given the phylogenetic closeness between humans and macaques. However, due to huge challenges in the analysis of early brain Magnetic Resonance Imaging (MRI) data typically with extremely low contrast and dynamic imaging appearances, our knowledge of the early macaque cortical development remains scarce. To fill this critical gap, this paper characterizes the early developmental patterns of cortical thickness and surface area in rhesus macaques by leveraging advanced computing tools tailored for early developing brains based on a densely sampled longitudinal dataset with 140 rhesus macaque MRI scans seamlessly covering from birth to 36 mo of age. The average cortical thickness exhibits an inverted U-shaped trajectory with peak thickness at around 4.3 mo of age, which is remarkably in line with the age of peak thickness at 14 mo in humans, considering the around 3:1 age ratio of human to macaque. The total cortical surface area in macaques increases monotonically but with relatively lower expansions than in humans. The spatial distributions of thicker and thinner regions are quite consistent during development, with gyri having a thicker cortex than sulci. By 4 mo of age, over 81% of cortical vertices have reached their peaks in thickness, except for the insula and medial temporal cortices, while most cortical vertices keep expanding in surface area, except for the occipital cortex. These findings provide important insights into early brain development and evolution in primates.
Collapse
Affiliation(s)
- Jing Xia
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Fan Wang
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Ya Wang
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Li Wang
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Gang Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| |
Collapse
|
2
|
Wen D, Ding LS, Zhang Y, Li X, Zhang X, Yuan F, Zhao T, Zheng A. Suppression of flavivirus transmission from animal hosts to mosquitoes with a mosquito-delivered vaccine. Nat Commun 2022; 13:7780. [PMID: 36526630 PMCID: PMC9755785 DOI: 10.1038/s41467-022-35407-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Zoonotic viruses circulate in the natural reservoir and sporadically spill over into human populations, resulting in endemics or pandemics. We previously found that the Chaoyang virus (CYV), an insect-specific flavivirus (ISF), is replication-defective in vertebrate cells. Here, we develope a proof-of-concept mosquito-delivered vaccine to control the Zika virus (ZIKV) within inaccessible wildlife hosts using CYV as the vector. The vaccine is constructed by replacing the pre-membrane and envelope (prME) proteins of CYV with those of ZIKV, assigned as CYV-ZIKV. CYV-ZIKV replicates efficiently in Aedes mosquitoes and disseminates to the saliva, with no venereal or transovarial transmission observed. To reduce the risk of CYV-ZIKV leaking into the environment, mosquitoes are X-ray irradiated to ensure 100% infertility, which does not affect the titer of CYV-ZIKV in the saliva. Immunization of mice via CYV-ZIKV-carrying mosquito bites elicites robust and persistent ZIKV-specific immune responses and confers complete protection against ZIKV challenge. Correspondingly, the immunized mice could no longer transmit the challenged ZIKV to naïve mosquitoes. Therefore, immunization with an ISF-vectored vaccine via mosquito bites is feasible to induce herd immunity in wildlife hosts of ZIKV. Our study provides a future avenue for developing a mosquito-delivered vaccine to eliminate zoonotic viruses in the sylvatic cycle.
Collapse
Affiliation(s)
- Dan Wen
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Limin S. Ding
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Yanan Zhang
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Xiaoye Li
- grid.462338.80000 0004 0605 6769College of life sciences, Henan Normal University, 45300 Xinxiang, China
| | - Xing Zhang
- grid.410726.60000 0004 1797 8419College of life sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Fei Yuan
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Tongbiao Zhao
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Aihua Zheng
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
3
|
Zhang S, Chavoshnejad P, Li X, Guo L, Jiang X, Han J, Wang L, Li G, Wang X, Liu T, Razavi MJ, Zhang S, Zhang T. Gyral peaks: Novel gyral landmarks in developing macaque brains. Hum Brain Mapp 2022; 43:4540-4555. [PMID: 35713202 PMCID: PMC9491295 DOI: 10.1002/hbm.25971] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 11/09/2022] Open
Abstract
Cerebral cortex development undergoes a variety of processes, which provide valuable information for the study of the developmental mechanism of cortical folding as well as its relationship to brain structural architectures and brain functions. Despite the variability in the anatomy-function relationship on the higher-order cortex, recent studies have succeeded in identifying typical cortical landmarks, such as sulcal pits, that bestow specific functional and cognitive patterns and remain invariant across subjects and ages with their invariance being related to a gene-mediated proto-map. Inspired by the success of these studies, we aim in this study at defining and identifying novel cortical landmarks, termed gyral peaks, which are the local highest foci on gyri. By analyzing data from 156 MRI scans of 32 macaque monkeys with the age spanned from 0 to 36 months, we identified 39 and 37 gyral peaks on the left and right hemispheres, respectively. Our investigation suggests that these gyral peaks are spatially consistent across individuals and relatively stable within the age range of this dataset. Moreover, compared with other gyri, gyral peaks have a thicker cortex, higher mean curvature, more pronounced hub-like features in structural connective networks, and are closer to the borders of structural connectivity-based cortical parcellations. The spatial distribution of gyral peaks was shown to correlate with that of other cortical landmarks, including sulcal pits. These results provide insights into the spatial arrangement and temporal development of gyral peaks as well as their relation to brain structure and function.
Collapse
Affiliation(s)
- Songyao Zhang
- School of AutomationNorthwestern Polytechnical UniversityXi'anChina
| | - Poorya Chavoshnejad
- Department of Mechanical EngineeringState University of New York at BinghamtonNew YorkUSA
| | - Xiao Li
- School of Information TechnologyNorthwest UniversityXi'anChina
| | - Lei Guo
- School of AutomationNorthwestern Polytechnical UniversityXi'anChina
| | - Xi Jiang
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Junwei Han
- School of AutomationNorthwestern Polytechnical UniversityXi'anChina
| | - Li Wang
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Gang Li
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Xianqiao Wang
- College of EngineeringThe University of GeorgiaAthensGeorgiaUSA
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research CenterThe University of GeorgiaAthensGeorgiaUSA
| | - Mir Jalil Razavi
- Department of Mechanical EngineeringState University of New York at BinghamtonNew YorkUSA
| | - Shu Zhang
- Center for Brain and Brain‐Inspired Computing Research, Department of Computer ScienceNorthwestern Polytechnical UniversityXi'anChina
| | - Tuo Zhang
- School of AutomationNorthwestern Polytechnical UniversityXi'anChina
| |
Collapse
|
4
|
Li X, Zhang S, Jiang X, Zhang S, Han J, Guo L, Zhang T. Cortical development coupling between surface area and sulcal depth on macaque brains. Brain Struct Funct 2022; 227:1013-1029. [PMID: 34989870 DOI: 10.1007/s00429-021-02444-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/15/2021] [Indexed: 02/06/2023]
Abstract
Postnatal development of cerebral cortex is associated with a variety of neuronal processes and is thus critical to development of brain function and cognition. Longitudinal changes of cortical morphology and topology, such as postnatal cortical thinning and flattening have been widely studied. However, thorough and systematic investigation of such cortical change, including how to quantify it from multiple spatial directions and how to relate it to surface topology, is rarely found. In this work, based on a longitudinal macaque neuroimaging dataset, we quantified local changes in gyral white matter's surface area and sulcal depth during early development. We also investigated how these two metrics are coupled and how this coupling is linked to cortical surface topology, underlying white matter, and positions of functional areas. Semi-parametric generalized additive models were adopted to quantify the longitudinal changes of surface area (A) and sulcal depth (D), and the coupling patterns between them. This resulted in four classes of regions, according to how they change compared with global change throughout early development: slower surface area change and slower sulcal depth change (slowA_slowD), slower surface area change and faster sulcal depth change (slowA_fastD), faster surface area change and slower sulcal depth change (fastA_slowD), and faster surface area change and faster sulcal depth change (fastA_fastD). We found that cortex-related metrics, including folding pattern and cortical thickness, vary along slowA_fastD-fastA_slowD axis, and structural connection-related metrics vary along fastA_fastD-slowA_slowD axis, with which brain functional sites align better. It is also found that cortical landmarks, including sulcal pits and gyral hinges, spatially reside on the borders of the four patterns. These findings shed new lights on the relationship between cortex development, surface topology, axonal wiring pattern and brain functions.
Collapse
Affiliation(s)
- Xiao Li
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Songyao Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Xi Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shu Zhang
- School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Junwei Han
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Lei Guo
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
5
|
Zhong T, Wei J, Wu K, Chen L, Zhao F, Pei Y, Wang Y, Zhang H, Wu Z, Huang Y, Li T, Wang L, Chen Y, Ji W, Zhang Y, Li G, Niu Y. Longitudinal brain atlases of early developing cynomolgus macaques from birth to 48 months of age. Neuroimage 2021; 247:118799. [PMID: 34896583 DOI: 10.1016/j.neuroimage.2021.118799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/05/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022] Open
Abstract
Longitudinal brain imaging atlases with densely sampled time-points and ancillary anatomical information are of fundamental importance in studying early developmental characteristics of human and non-human primate brains during infancy, which feature extremely dynamic imaging appearance, brain shape and size. However, for non-human primates, which are highly valuable animal models for understanding human brains, the existing brain atlases are mainly developed based on adults or adolescents, denoting a notable lack of temporally densely-sampled atlases covering the dynamic early brain development. To fill this critical gap, in this paper, we construct a comprehensive set of longitudinal brain atlases and associated tissue probability maps (gray matter, white matter, and cerebrospinal fluid) with totally 12 time-points from birth to 4 years of age (i.e., 1, 2, 3, 4, 5, 6, 9, 12, 18, 24, 36, and 48 months of age) based on 175 longitudinal structural MRI scans from 39 typically-developing cynomolgus macaques, by leveraging state-of-the-art computational techniques tailored for early developing brains. Furthermore, to facilitate region-based analysis using our atlases, we also provide two popular hierarchy parcellations, i.e., cortical hierarchy maps (6 levels) and subcortical hierarchy maps (6 levels), on our longitudinal macaque brain atlases. These early developing atlases, which have the densest time-points during infancy (to the best of our knowledge), will greatly facilitate the studies of macaque brain development.
Collapse
Affiliation(s)
- Tao Zhong
- Department of Radiology and BRIC, University of North Carolina Chapel Hill, USA; Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Jingkuan Wei
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Kunhua Wu
- Department of MRI, the First People's Hospital of Yunnan Province, Kunming, China
| | - Liangjun Chen
- Department of Radiology and BRIC, University of North Carolina Chapel Hill, USA
| | - Fenqiang Zhao
- Department of Radiology and BRIC, University of North Carolina Chapel Hill, USA
| | - Yuchen Pei
- Department of Radiology and BRIC, University of North Carolina Chapel Hill, USA
| | - Ya Wang
- Department of Radiology and BRIC, University of North Carolina Chapel Hill, USA
| | - Hongjiang Zhang
- Department of MRI, the First People's Hospital of Yunnan Province, Kunming, China
| | - Zhengwang Wu
- Department of Radiology and BRIC, University of North Carolina Chapel Hill, USA
| | - Ying Huang
- Department of Radiology and BRIC, University of North Carolina Chapel Hill, USA
| | - Tengfei Li
- Department of Radiology and BRIC, University of North Carolina Chapel Hill, USA
| | - Li Wang
- Department of Radiology and BRIC, University of North Carolina Chapel Hill, USA
| | - Yongchang Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Yu Zhang
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina Chapel Hill, USA.
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China.
| |
Collapse
|
6
|
Xia J, Wang F, Wu Z, Wang L, Zhang C, Shen D, Li G. Mapping hemispheric asymmetries of the macaque cerebral cortex during early brain development. Hum Brain Mapp 2019; 41:95-106. [PMID: 31532054 PMCID: PMC7267900 DOI: 10.1002/hbm.24789] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/29/2019] [Accepted: 06/05/2019] [Indexed: 11/10/2022] Open
Abstract
Studying cortical hemispheric asymmetries during the dynamic early postnatal stages in macaque monkeys (with close phylogenetic relationship to humans) would increase our limited understanding on the possible origins, developmental trajectories, and evolutional mechanisms of brain asymmetries in nonhuman primates, but remains a blind spot to the community. Via cortical surface-based morphometry, we comprehensively analyze hemispheric structural asymmetries in 134 longitudinal MRI scans from birth to 20 months of age from 32 healthy macaque monkeys. We reveal that most clusters of hemispheric asymmetries of cortical properties, such as surface area, cortical thickness, sulcal depth, and vertex positions, expand in the first 4 months of life, and evolve only moderately thereafter. Prominent hemispheric asymmetries are found at the inferior frontal gyrus, precentral gyrus, posterior temporal cortex, superior temporal gyrus (STG), superior temporal sulcus (STS), and cingulate cortex. Specifically, the left planum temporale and left STG consistently have larger area and thicker cortices than those on the right hemisphere, while the right STS, right cingulate cortex, and right anterior insula are consistently deeper than the left ones, partially consistent with the findings in human infants and adults. Our results thus provide a valuable reference in studying early brain development and evolution.
Collapse
Affiliation(s)
- Jing Xia
- Department of Computer Science and Technology, Shandong University, Jinan, Shandong, China.,Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Fan Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Zhengwang Wu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Li Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Caiming Zhang
- Department of Computer Science and Technology, Shandong University, Jinan, Shandong, China
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
7
|
Zhao F, Xia S, Wu Z, Wang L, Chen Z, Lin W, Gilmore JH, Shen D, Li G. SPHERICAL U-NET FOR INFANT CORTICAL SURFACE PARCELLATION. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2019; 2019:1882-1886. [PMID: 31681458 PMCID: PMC6824603 DOI: 10.1109/isbi.2019.8759537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In human brain MRI studies, it is of great importance to accurately parcellate cortical surfaces into anatomically and functionally meaningful regions. In this paper, we propose a novel end-to-end deep learning method by formulating surface parcellation as a semantic segmentation task on the sphere. To extend the convolutional neural networks (CNNs) to the spherical space, corresponding operations of surface convolution, pooling and upsampling are first developed to deal with data representation on spherical surface meshes, and then spherical CNNs are constructed accordingly. Specifically, the U-Net and SegNet architectures are transformed to the spherical representation for neonatal cortical surface parcellation. Experimental results on 90 neonates indicate the effectiveness and efficiency of our proposed spherical U-Net, in comparison with the spherical SegNet and the previous patch-wise classification method.
Collapse
Affiliation(s)
- Fenqiang Zhao
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, China
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Shunren Xia
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, China
| | - Zhengwang Wu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Li Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Zengsi Chen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, 27599, USA
- College of Sciences, China Jiliang University, Zhejiang, 310018, China
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, 27599, USA
| |
Collapse
|
8
|
Computational neuroanatomy of baby brains: A review. Neuroimage 2018; 185:906-925. [PMID: 29574033 DOI: 10.1016/j.neuroimage.2018.03.042] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 02/23/2018] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
The first postnatal years are an exceptionally dynamic and critical period of structural, functional and connectivity development of the human brain. The increasing availability of non-invasive infant brain MR images provides unprecedented opportunities for accurate and reliable charting of dynamic early brain developmental trajectories in understanding normative and aberrant growth. However, infant brain MR images typically exhibit reduced tissue contrast (especially around 6 months of age), large within-tissue intensity variations, and regionally-heterogeneous, dynamic changes, in comparison with adult brain MR images. Consequently, the existing computational tools developed typically for adult brains are not suitable for infant brain MR image processing. To address these challenges, many infant-tailored computational methods have been proposed for computational neuroanatomy of infant brains. In this review paper, we provide a comprehensive review of the state-of-the-art computational methods for infant brain MRI processing and analysis, which have advanced our understanding of early postnatal brain development. We also summarize publically available infant-dedicated resources, including MRI datasets, computational tools, grand challenges, and brain atlases. Finally, we discuss the limitations in current research and suggest potential future research directions.
Collapse
|