1
|
Karn PK, Abdulla WH. Advancing Ocular Imaging: A Hybrid Attention Mechanism-Based U-Net Model for Precise Segmentation of Sub-Retinal Layers in OCT Images. Bioengineering (Basel) 2024; 11:240. [PMID: 38534514 DOI: 10.3390/bioengineering11030240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
This paper presents a novel U-Net model incorporating a hybrid attention mechanism for automating the segmentation of sub-retinal layers in Optical Coherence Tomography (OCT) images. OCT is an ophthalmology tool that provides detailed insights into retinal structures. Manual segmentation of these layers is time-consuming and subjective, calling for automated solutions. Our proposed model combines edge and spatial attention mechanisms with the U-Net architecture to improve segmentation accuracy. By leveraging attention mechanisms, the U-Net focuses selectively on image features. Extensive evaluations using datasets demonstrate that our model outperforms existing approaches, making it a valuable tool for medical professionals. The study also highlights the model's robustness through performance metrics such as an average Dice score of 94.99%, Adjusted Rand Index (ARI) of 97.00%, and Strength of Agreement (SOA) classifications like "Almost Perfect", "Excellent", and "Very Strong". This advanced predictive model shows promise in expediting processes and enhancing the precision of ocular imaging in real-world applications.
Collapse
Affiliation(s)
- Prakash Kumar Karn
- Department of Electrical, Computer and Software Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Waleed H Abdulla
- Department of Electrical, Computer and Software Engineering, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
2
|
Shen Y, Li J, Zhu W, Yu K, Wang M, Peng Y, Zhou Y, Guan L, Chen X. Graph Attention U-Net for Retinal Layer Surface Detection and Choroid Neovascularization Segmentation in OCT Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:3140-3154. [PMID: 37022267 DOI: 10.1109/tmi.2023.3240757] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Choroidal neovascularization (CNV) is a typical symptom of age-related macular degeneration (AMD) and is one of the leading causes for blindness. Accurate segmentation of CNV and detection of retinal layers are critical for eye disease diagnosis and monitoring. In this paper, we propose a novel graph attention U-Net (GA-UNet) for retinal layer surface detection and CNV segmentation in optical coherence tomography (OCT) images. Due to retinal layer deformation caused by CNV, it is challenging for existing models to segment CNV and detect retinal layer surfaces with the correct topological order. We propose two novel modules to address the challenge. The first module is a graph attention encoder (GAE) in a U-Net model that automatically integrates topological and pathological knowledge of retinal layers into the U-Net structure to achieve effective feature embedding. The second module is a graph decorrelation module (GDM) that takes reconstructed features by the decoder of the U-Net as inputs, it then decorrelates and removes information unrelated to retinal layer for improved retinal layer surface detection. In addition, we propose a new loss function to maintain the correct topological order of retinal layers and the continuity of their boundaries. The proposed model learns graph attention maps automatically during training and performs retinal layer surface detection and CNV segmentation simultaneously with the attention maps during inference. We evaluated the proposed model on our private AMD dataset and another public dataset. Experiment results show that the proposed model outperformed the competing methods for retinal layer surface detection and CNV segmentation and achieved new state of the arts on the datasets.
Collapse
|
3
|
He Y, Carass A, Liu Y, Jedynak BM, Solomon SD, Saidha S, Calabresi PA, Prince JL. Structured layer surface segmentation for retina OCT using fully convolutional regression networks. Med Image Anal 2021; 68:101856. [PMID: 33260113 PMCID: PMC7855873 DOI: 10.1016/j.media.2020.101856] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 08/27/2020] [Accepted: 09/14/2020] [Indexed: 12/18/2022]
Abstract
Optical coherence tomography (OCT) is a noninvasive imaging modality with micrometer resolution which has been widely used for scanning the retina. Retinal layers are important biomarkers for many diseases. Accurate automated algorithms for segmenting smooth continuous layer surfaces with correct hierarchy (topology) are important for automated retinal thickness and surface shape analysis. State-of-the-art methods typically use a two step process. Firstly, a trained classifier is used to label each pixel into either background and layers or boundaries and non-boundaries. Secondly, the desired smooth surfaces with the correct topology are extracted by graph methods (e.g., graph cut). Data driven methods like deep networks have shown great ability for the pixel classification step, but to date have not been able to extract structured smooth continuous surfaces with topological constraints in the second step. In this paper, we combine these two steps into a unified deep learning framework by directly modeling the distribution of the surface positions. Smooth, continuous, and topologically correct surfaces are obtained in a single feed forward operation. The proposed method was evaluated on two publicly available data sets of healthy controls and subjects with either multiple sclerosis or diabetic macular edema, and is shown to achieve state-of-the art performance with sub-pixel accuracy.
Collapse
Affiliation(s)
- Yufan He
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Aaron Carass
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yihao Liu
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bruno M Jedynak
- Department of Mathematics & Statistics, Portland State University, Portland, OR 97201, USA
| | - Sharon D Solomon
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, MD 21287, USA
| | - Shiv Saidha
- Department of Neurology, The Johns Hopkins University School of Medicine, MD 21287, USA
| | - Peter A Calabresi
- Department of Neurology, The Johns Hopkins University School of Medicine, MD 21287, USA
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
4
|
He Y, Carass A, Solomon SD, Saidha S, Calabresi PA, Prince JL. Retinal layer parcellation of optical coherence tomography images: Data resource for multiple sclerosis and healthy controls. Data Brief 2019; 22:601-604. [PMID: 30671506 PMCID: PMC6327073 DOI: 10.1016/j.dib.2018.12.073] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 12/14/2018] [Accepted: 12/20/2018] [Indexed: 11/20/2022] Open
Abstract
This paper presents optical coherence tomography (OCT) images of the human retina and manual delineations of eight retinal layers. The data includes 35 human retina scans acquired on a Spectralis OCT system (Heidelberg Engineering, Heidelberg, Germany), 14 of which are healthy controls (HC) and 21 have a diagnosis of multiple sclerosis (MS). The provided data includes manually delineation of eight retina layers, which were independently reviewed and edited. The data presented in this article was used to validate automatic segmentation algorithms (Lang et al., 2013).
Collapse
Affiliation(s)
- Yufan He
- Dept. of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Aaron Carass
- Dept. of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sharon D. Solomon
- Wilmer Eye Institute, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Shiv Saidha
- Dept. of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Peter A. Calabresi
- Dept. of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Jerry L. Prince
- Dept. of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|