1
|
Dong Q, Li Z, Liu W, Chen K, Su Y, Wu J, Caselli RJ, Reiman EM, Wang Y, Shen J. Correlation studies of Hippocampal Morphometry and Plasma NFL Levels in Cognitively Unimpaired Subjects. IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 2023; 10:3602-3608. [PMID: 38084365 PMCID: PMC10713345 DOI: 10.1109/tcss.2023.3313819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Alzheimer's disease(AD) is being the burden of society and family. Applying computing-aided strategies to reveal its pathology is one of the research highlights. Plasma neurofilament light (NFL) is an emerging noninvasive and economic biomarker for AD molecular pathology. It is valuable to reveal the correlations between the plasma NFL levels and neurodegeneration, especially hippcampal deformations at the preclinical stage. The negative correlation between plasma NFL levels and hippocampal volumes has been documented. However, the relationship between the plasma NFL levels and the hippocampal morphometry details at the preclinical stage is still elusive. This study seeks to demonstrate the capacity of our proposed surface-based hippocampal morphometry system to discern the plasma NFL positive (NFL+>41.9 pg/L) level and plasma NFL negative (NFL-<41.9pg/L) level and illustrate its superiority to the hippocampal volume measurement by drawing the cohort of 154 CU middle aged and elderly adults. We also apply this morphometry measure and a proposed sparse coding based classification algorithm to classify CU individuals with NFL+ and NFL- levels. Experimental results show that the proposed hippocampal morphometry system offers stronger statistical power to discriminate CU subjects with NFL+ and NFL- levels, comparing with the hippocampal volume measure. Furthermore, this system can discriminate plasma NFL levels in CU individuals (Accuracy=0.86). Both the group level and individual level analysis results indicate that the association between plasma NFL levels and the hippocampal shapes can be mapped at the preclinical stage.
Collapse
Affiliation(s)
- Qunxi Dong
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhigang Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Weijia Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Jianfeng Wu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State Univ., Tempe, AZ, USA
| | | | | | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State Univ., Tempe, AZ, USA
| | - Jian Shen
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
2
|
Zhang L, Fu Y, Zhao Z, Cong Z, Zheng W, Zhang Q, Yao Z, Hu B. Analysis of Hippocampus Evolution Patterns and Prediction of Conversion in Mild Cognitive Impairment Using Multivariate Morphometry Statistics. J Alzheimers Dis 2022; 86:1695-1710. [DOI: 10.3233/jad-215568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Mild cognitive impairment (MCI), which is generally regarded as the prodromal stage of Alzheimer’s disease (AD), is associated with morphological changes in brain structures, particularly the hippocampus. However, the indicators for characterizing the deformation of hippocampus in conventional methods are not precise enough and ignore the evolution information with the course of disease. Objective: The purpose of this study was to investigate the temporal evolution pattern of MCI and predict the conversion of MCI to AD by using the multivariate morphometry statistics (MMS) as fine features. Methods: First, we extracted MMS features from MRI scans of 64 MCI converters (MCIc), 81 MCI patients who remained stable (MCIs), and 90 healthy controls (HC). To make full use of the time information, the dynamic MMS (DMMS) features were defined. Then, the areas with significant differences between pairs of the three groups were analyzed using statistical methods and the atrophy/expansion were identified by comparing the metrics. In parallel, patch selection, sparse coding, dictionary learning and maximum pooling were used for the dimensionality reduction and the ensemble classifier GentleBoost was used to classify MCIc and MCIs. Results: The longitudinal analysis revealed that the atrophy of both MCIc and MCIs mainly distributed in dorsal CA1, then spread to subiculum and other regions gradually, while the atrophy area of MCIc was larger and more significant. And the introduction of longitudinal information promoted the accuracy to 91.76% for conversion prediction. Conclusion: The dynamic information of hippocampus holds a huge potential for understanding the pathology of MCI.
Collapse
Affiliation(s)
- Lingyu Zhang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Yu Fu
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ziyang Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Zhaoyang Cong
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Weihao Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Qin Zhang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang, China
- Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University & Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
- Engineering Research Center of Open Source Software and Real-Time System (Lanzhou University), Ministry of Education, Lanzhou, China
| | | |
Collapse
|
3
|
Wu J, Chen Y, Wang P, Caselli RJ, Thompson PM, Wang J, Wang Y. Integrating Transcriptomics, Genomics, and Imaging in Alzheimer's Disease: A Federated Model. FRONTIERS IN RADIOLOGY 2022; 1:777030. [PMID: 37492173 PMCID: PMC10365097 DOI: 10.3389/fradi.2021.777030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/21/2021] [Indexed: 07/27/2023]
Abstract
Alzheimer's disease (AD) affects more than 1 in 9 people age 65 and older and becomes an urgent public health concern as the global population ages. In clinical practice, structural magnetic resonance imaging (sMRI) is the most accessible and widely used diagnostic imaging modality. Additionally, genome-wide association studies (GWAS) and transcriptomics-the study of gene expression-also play an important role in understanding AD etiology and progression. Sophisticated imaging genetics systems have been developed to discover genetic factors that consistently affect brain function and structure. However, most studies to date focused on the relationships between brain sMRI and GWAS or brain sMRI and transcriptomics. To our knowledge, few methods have been developed to discover and infer multimodal relationships among sMRI, GWAS, and transcriptomics. To address this, we propose a novel federated model, Genotype-Expression-Imaging Data Integration (GEIDI), to identify genetic and transcriptomic influences on brain sMRI measures. The relationships between brain imaging measures and gene expression are allowed to depend on a person's genotype at the single-nucleotide polymorphism (SNP) level, making the inferences adaptive and personalized. We performed extensive experiments on publicly available Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. Experimental results demonstrated our proposed method outperformed state-of-the-art expression quantitative trait loci (eQTL) methods for detecting genetic and transcriptomic factors related to AD and has stable performance when data are integrated from multiple sites. Our GEIDI approach may offer novel insights into the relationship among image biomarkers, genotypes, and gene expression and help discover novel genetic targets for potential AD drug treatments.
Collapse
Affiliation(s)
- Jianfeng Wu
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, United States
| | - Yanxi Chen
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, United States
| | - Panwen Wang
- Department of Health Sciences Research and Center for Individualized Medicine, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Richard J. Caselli
- Department of Neurology, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Paul M. Thompson
- Imaging Genetics Center, Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Junwen Wang
- Department of Health Sciences Research and Center for Individualized Medicine, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Yalin Wang
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
4
|
Wu J, Dong Q, Zhang J, Su Y, Wu T, Caselli RJ, Reiman EM, Ye J, Lepore N, Chen K, Thompson PM, Wang Y. Federated Morphometry Feature Selection for Hippocampal Morphometry Associated Beta-Amyloid and Tau Pathology. Front Neurosci 2021; 15:762458. [PMID: 34899166 PMCID: PMC8655732 DOI: 10.3389/fnins.2021.762458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/01/2021] [Indexed: 12/03/2022] Open
Abstract
Amyloid-β (Aβ) plaques and tau protein tangles in the brain are now widely recognized as the defining hallmarks of Alzheimer's disease (AD), followed by structural atrophy detectable on brain magnetic resonance imaging (MRI) scans. One of the particular neurodegenerative regions is the hippocampus to which the influence of Aβ/tau on has been one of the research focuses in the AD pathophysiological progress. This work proposes a novel framework, Federated Morphometry Feature Selection (FMFS) model, to examine subtle aspects of hippocampal morphometry that are associated with Aβ/tau burden in the brain, measured using positron emission tomography (PET). FMFS is comprised of hippocampal surface-based feature calculation, patch-based feature selection, federated group LASSO regression, federated screening rule-based stability selection, and region of interest (ROI) identification. FMFS was tested on two Alzheimer's Disease Neuroimaging Initiative (ADNI) cohorts to understand hippocampal alterations that relate to Aβ/tau depositions. Each cohort included pairs of MRI and PET for AD, mild cognitive impairment (MCI), and cognitively unimpaired (CU) subjects. Experimental results demonstrated that FMFS achieves an 89× speedup compared to other published state-of-the-art methods under five independent hypothetical institutions. In addition, the subiculum and cornu ammonis 1 (CA1 subfield) were identified as hippocampal subregions where atrophy is strongly associated with abnormal Aβ/tau. As potential biomarkers for Aβ/tau pathology, the features from the identified ROIs had greater power for predicting cognitive assessment and for survival analysis than five other imaging biomarkers. All the results indicate that FMFS is an efficient and effective tool to reveal associations between Aβ/tau burden and hippocampal morphometry.
Collapse
Affiliation(s)
- Jianfeng Wu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Qunxi Dong
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Jie Zhang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Yi Su
- Banner Alzheimer’s Institute, Phoenix, AZ, United States
| | - Teresa Wu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Richard J. Caselli
- Department of Neurology, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Eric M. Reiman
- Banner Alzheimer’s Institute, Phoenix, AZ, United States
| | - Jieping Ye
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Natasha Lepore
- CIBORG Lab, Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Kewei Chen
- Banner Alzheimer’s Institute, Phoenix, AZ, United States
| | - Paul M. Thompson
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, United States
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
5
|
Wu J, Zhu W, Su Y, Gui J, Lepore N, Reiman EM, Caselli RJ, Thompson PM, Chen K, Wang Y. Predicting Tau Accumulation in Cerebral Cortex with Multivariate MRI Morphometry Measurements, Sparse Coding, and Correntropy. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2021; 12088:120880O. [PMID: 34961803 PMCID: PMC8710175 DOI: 10.1117/12.2607169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biomarker-assisted diagnosis and intervention in Alzheimer's disease (AD) may be the key to prevention breakthroughs. One of the hallmarks of AD is the accumulation of tau plaques in the human brain. However, current methods to detect tau pathology are either invasive (lumbar puncture) or quite costly and not widely available (Tau PET). In our previous work, structural MRI-based hippocampal multivariate morphometry statistics (MMS) showed superior performance as an effective neurodegenerative biomarker for preclinical AD and Patch Analysis-based Surface Correntropy-induced Sparse coding and max-pooling (PASCS-MP) has excellent ability to generate low-dimensional representations with strong statistical power for brain amyloid prediction. In this work, we apply this framework together with ridge regression models to predict Tau deposition in Braak12 and Braak34 brain regions separately. We evaluate our framework on 925 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Each subject has one pair consisting of a PET image and MRI scan which were collected at about the same times. Experimental results suggest that the representations from our MMS and PASCS-MP have stronger predictive power and their predicted Braak12 and Braak34 are closer to the real values compared to the measures derived from other approaches such as hippocampal surface area and volume, and shape morphometry features based on spherical harmonics (SPHARM).
Collapse
Affiliation(s)
- Jianfeng Wu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, USA
| | - Wenhui Zhu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, USA
| | - Yi Su
- Banner Alzheimer’s Institute, Phoenix, USA
| | - Jie Gui
- School of Cyber Science and Engineering, Southeast University, Nanjing, China
| | - Natasha Lepore
- CIBORG Lab, Department of Radiology Children’s Hospital Los Angeles, Los Angeles, USA
| | | | | | - Paul M. Thompson
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, USA
| | - Kewei Chen
- Banner Alzheimer’s Institute, Phoenix, USA
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, USA
| |
Collapse
|
6
|
Wu J, Dong Q, Gui J, Zhang J, Su Y, Chen K, Thompson PM, Caselli RJ, Reiman EM, Ye J, Wang Y. Predicting Brain Amyloid Using Multivariate Morphometry Statistics, Sparse Coding, and Correntropy: Validation in 1,101 Individuals From the ADNI and OASIS Databases. Front Neurosci 2021; 15:669595. [PMID: 34421510 PMCID: PMC8377280 DOI: 10.3389/fnins.2021.669595] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/15/2021] [Indexed: 01/04/2023] Open
Abstract
Biomarker assisted preclinical/early detection and intervention in Alzheimer’s disease (AD) may be the key to therapeutic breakthroughs. One of the presymptomatic hallmarks of AD is the accumulation of beta-amyloid (Aβ) plaques in the human brain. However, current methods to detect Aβ pathology are either invasive (lumbar puncture) or quite costly and not widely available (amyloid PET). Our prior studies show that magnetic resonance imaging (MRI)-based hippocampal multivariate morphometry statistics (MMS) are an effective neurodegenerative biomarker for preclinical AD. Here we attempt to use MRI-MMS to make inferences regarding brain Aβ burden at the individual subject level. As MMS data has a larger dimension than the sample size, we propose a sparse coding algorithm, Patch Analysis-based Surface Correntropy-induced Sparse-coding and Max-Pooling (PASCS-MP), to generate a low-dimensional representation of hippocampal morphometry for each individual subject. Then we apply these individual representations and a binary random forest classifier to predict brain Aβ positivity for each person. We test our method in two independent cohorts, 841 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and 260 subjects from the Open Access Series of Imaging Studies (OASIS). Experimental results suggest that our proposed PASCS-MP method and MMS can discriminate Aβ positivity in people with mild cognitive impairment (MCI) [Accuracy (ACC) = 0.89 (ADNI)] and in cognitively unimpaired (CU) individuals [ACC = 0.79 (ADNI) and ACC = 0.81 (OASIS)]. These results compare favorably relative to measures derived from traditional algorithms, including hippocampal volume and surface area, shape measures based on spherical harmonics (SPHARM) and our prior Patch Analysis-based Surface Sparse-coding and Max-Pooling (PASS-MP) methods.
Collapse
Affiliation(s)
- Jianfeng Wu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Qunxi Dong
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States.,Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Jie Gui
- School of Cyber Science and Engineering, Southeast University, Nanjing, China
| | - Jie Zhang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ, United States
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, United States
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, United States
| | - Richard J Caselli
- Department of Neurology, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Eric M Reiman
- Banner Alzheimer's Institute, Phoenix, AZ, United States
| | - Jieping Ye
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
7
|
Fan Y, Wang G, Dong Q, Liu Y, Leporé N, Wang Y. Tetrahedral spectral feature-Based bayesian manifold learning for grey matter morphometry: Findings from the Alzheimer's disease neuroimaging initiative. Med Image Anal 2021; 72:102123. [PMID: 34214958 PMCID: PMC8316398 DOI: 10.1016/j.media.2021.102123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/30/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022]
Abstract
Structural and anatomical analyses of magnetic resonance imaging (MRI) data often require a reconstruction of the three-dimensional anatomy to a statistical shape model. Our prior work demonstrated the usefulness of tetrahedral spectral features for grey matter morphometry. However, most of the current methods provide a large number of descriptive shape features, but lack an unsupervised scheme to automatically extract a concise set of features with clear biological interpretations and that also carries strong statistical power. Here we introduce a new tetrahedral spectral feature-based Bayesian manifold learning framework for effective statistical analysis of grey matter morphology. We start by solving the technical issue of generating tetrahedral meshes which preserve the details of the grey matter geometry. We then derive explicit weak-form tetrahedral discretizations of the Hamiltonian operator (HO) and the Laplace-Beltrami operator (LBO). Next, the Schrödinger's equation is solved for constructing the scale-invariant wave kernel signature (SIWKS) as the shape descriptor. By solving the heat equation and utilizing the SIWKS, we design a morphometric Gaussian process (M-GP) regression framework and an active learning strategy to select landmarks as concrete shape descriptors. We evaluate the proposed system on publicly available data from the Alzheimers Disease Neuroimaging Initiative (ADNI), using subjects structural MRI covering the range from cognitively unimpaired (CU) to full blown Alzheimer's disease (AD). Our analyses suggest that the SIWKS and M-GP compare favorably with seven other baseline algorithms to obtain grey matter morphometry-based diagnoses. Our work may inspire more tetrahedral spectral feature-based Bayesian learning research in medical image analysis.
Collapse
Affiliation(s)
- Yonghui Fan
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Gang Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA; School of Information and Electrical Engineering, Ludong University, Yantai, China
| | - Qunxi Dong
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Yuxiang Liu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Natasha Leporé
- CIBORG Lab, Department of Radiology Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
8
|
Zhang J, Dong Q, Shi J, Li Q, Stonnington CM, Gutman BA, Chen K, Reiman EM, Caselli RJ, Thompson PM, Ye J, Wang Y. Predicting future cognitive decline with hyperbolic stochastic coding. Med Image Anal 2021; 70:102009. [PMID: 33711742 PMCID: PMC8049149 DOI: 10.1016/j.media.2021.102009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/10/2020] [Accepted: 02/16/2021] [Indexed: 01/18/2023]
Abstract
Hyperbolic geometry has been successfully applied in modeling brain cortical and subcortical surfaces with general topological structures. However, such approaches, similar to other surface-based brain morphology analysis methods, usually generate high dimensional features. It limits their statistical power in cognitive decline prediction research, especially in datasets with limited subject numbers. To address the above limitation, we propose a novel framework termed as hyperbolic stochastic coding (HSC). We first compute diffeomorphic maps between general topological surfaces by mapping them to a canonical hyperbolic parameter space with consistent boundary conditions and extracts critical shape features. Secondly, in the hyperbolic parameter space, we introduce a farthest point sampling with breadth-first search method to obtain ring-shaped patches. Thirdly, stochastic coordinate coding and max-pooling algorithms are adopted for feature dimension reduction. We further validate the proposed system by comparing its classification accuracy with some other methods on two brain imaging datasets for Alzheimer's disease (AD) progression studies. Our preliminary experimental results show that our algorithm achieves superior results on various classification tasks. Our work may enrich surface-based brain imaging research tools and potentially result in a diagnostic and prognostic indicator to be useful in individualized treatment strategies.
Collapse
Affiliation(s)
- Jie Zhang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, 85287 USA
| | - Qunxi Dong
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, 85287 USA
| | - Jie Shi
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, 85287 USA
| | - Qingyang Li
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, 85287 USA
| | | | - Boris A Gutman
- Armour College of Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | | | | | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA, USA
| | - Jieping Ye
- Department of Computational Medicine and Bioinformatics & Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, 85287 USA.
| |
Collapse
|
9
|
Wu J, Zhang J, Li Q, Su Y, Chen K, Reiman EM, Wang J, Lepore N, Ye J, Thompson PM, Wang Y. Patch-Based Surface Morphometry Feature Selection with Federated Group Lasso Regression. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2020; 11583. [PMID: 33250550 DOI: 10.1117/12.2575984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Collectively, vast quantities of brain imaging data exist across hospitals and research institutions, providing valuable resources to study brain disorders such as Alzheimer's disease (AD). However, in practice, putting all these distributed datasets into a centralized platform is infeasible due to patient privacy concerns, data restrictions and legal regulations. In this study, we propose a novel federated feature selection framework that can analyze the data at each individual institution without data-sharing or accessing private patient information. In this framework, we first propose a federated group lasso optimization method based on block coordinate descent. We employ stability selection to determine statistically significant features, by solving the group lasso problem with a sequence of regularization parameters. To accelerate the stability selection, we further propose a federated screening rule, which can identify and exclude the irrelevant features before solving the group lasso. Here, we use this framework for patch based feature selection on hippocampal morphometry. Shape is characterized through two different kinds of local measures, the radial distance and the surface area determined via tensor-based morphometry (TBM). The method is tested on 1,127 T1-weighted brain magnetic resonance images (MRI) of AD, mild cognitive impairment (MCI) and elderly control subjects, randomly assigned to five independent hypothetical institutions for testing purpose. We examine the association of MRI-based anatomical measures with general cognitive assessment and amyloid burden to identify the morphometry changes related to AD deterioration and plaque accumulation. Finally, we visualize the significance of the association on the hippocampal surfaces. Our experimental results successfully demonstrate the efficiency and effectiveness of our method.
Collapse
Affiliation(s)
- Jianfeng Wu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, USA
| | - Jie Zhang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, USA
| | - Qingyang Li
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, USA
| | - Yi Su
- Banner Alzheimer's Institute, 100 Washtenaw Avenue, Phoenix, USA
| | - Kewei Chen
- Banner Alzheimer's Institute, 100 Washtenaw Avenue, Phoenix, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, 100 Washtenaw Avenue, Phoenix, USA
| | - Jie Wang
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, 1129 Huizhou Ave, Baohe District, Hefei, China
| | - Natasha Lepore
- CIBORG Lab, Department of Radiology, Children's Hospital Los Angeles, 4650 Sunset Blvd. MS 81, Los Angeles, USA
| | - Jieping Ye
- Department of Computational Medicine and Bioinformatics, University of Michigan, 1301 Beal Avenue, Ann Arbor, USA
| | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, 4676 Admiralty Way, Los Angeles, USA
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, USA
| |
Collapse
|
10
|
Dong Q, Zhang W, Stonnington CM, Wu J, Gutman BA, Chen K, Su Y, Baxter LC, Thompson PM, Reiman EM, Caselli RJ, Wang Y. Applying surface-based morphometry to study ventricular abnormalities of cognitively unimpaired subjects prior to clinically significant memory decline. NEUROIMAGE-CLINICAL 2020; 27:102338. [PMID: 32683323 PMCID: PMC7371915 DOI: 10.1016/j.nicl.2020.102338] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/15/2020] [Accepted: 07/02/2020] [Indexed: 12/31/2022]
Abstract
A completely automated surface-based ventricular morphometry system. Generate a whole connected 3D ventricular shape model. Test-retest the system in two independent CU subject cohorts. Subregional ventricular abnormalities prior to clinically memory decline.
Ventricular volume (VV) is a widely used structural magnetic resonance imaging (MRI) biomarker in Alzheimer’s disease (AD) research. Abnormal enlargements of VV can be detected before clinically significant memory decline. However, VV does not pinpoint the details of subregional ventricular expansions. Here we introduce a ventricular morphometry analysis system (VMAS) that generates a whole connected 3D ventricular shape model and encodes a great deal of ventricular surface deformation information that is inaccessible by VV. VMAS contains an automated segmentation approach and surface-based multivariate morphometry statistics. We applied VMAS to two independent datasets of cognitively unimpaired (CU) groups. To our knowledge, it is the first work to detect ventricular abnormalities that distinguish normal aging subjects from those who imminently progress to clinically significant memory decline. Significant bilateral ventricular morphometric differences were first shown in 38 members of the Arizona APOE cohort, which included 18 CU participants subsequently progressing to the clinically significant memory decline within 2 years after baseline visits (progressors), and 20 matched CU participants with at least 4 years of post-baseline cognitive stability (non-progressors). VMAS also detected significant differences in bilateral ventricular morphometry in 44 Alzheimer’s Disease Neuroimaging Initiative (ADNI) subjects (18 CU progressors vs. 26 CU non-progressors) with the same inclusion criterion. Experimental results demonstrated that the ventricular anterior horn regions were affected bilaterally in CU progressors, and more so on the left. VMAS may track disease progression at subregional levels and measure the effects of pharmacological intervention at a preclinical stage.
Collapse
Affiliation(s)
- Qunxi Dong
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Wen Zhang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | | | - Jianfeng Wu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Boris A Gutman
- Armour College of Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Leslie C Baxter
- Human Brain Imaging Laboratory, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA, USA
| | | | | | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
11
|
Kuang L, Han X, Chen K, Caselli RJ, Reiman EM, Wang Y. A concise and persistent feature to study brain resting-state network dynamics: Findings from the Alzheimer's Disease Neuroimaging Initiative. Hum Brain Mapp 2019; 40:1062-1081. [PMID: 30569583 PMCID: PMC6570412 DOI: 10.1002/hbm.24383] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/25/2018] [Accepted: 08/26/2018] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia in the elderly with no effective treatment currently. Recent studies of noninvasive neuroimaging, resting-state functional magnetic resonance imaging (rs-fMRI) with graph theoretical analysis have shown that patients with AD and mild cognitive impairment (MCI) exhibit disrupted topological organization in large-scale brain networks. In previous work, it is a common practice to threshold such networks. However, it is not only difficult to make a principled choice of threshold values, but also worse is the discard of potential important information. To address this issue, we propose a threshold-free feature by integrating a prior persistent homology-based topological feature (the zeroth Betti number) and a newly defined connected component aggregation cost feature to model brain networks over all possible scales. We show that the induced topological feature (Integrated Persistent Feature) follows a monotonically decreasing convergence function and further propose to use its slope as a concise and persistent brain network topological measure. We apply this measure to study rs-fMRI data from the Alzheimer's Disease Neuroimaging Initiative and compare our approach with five other widely used graph measures across five parcellation schemes ranging from 90 to 1,024 region-of-interests. The experimental results demonstrate that the proposed network measure shows more statistical power and stronger robustness in group difference studies in that the absolute values of the proposed measure of AD are lower than MCI and much lower than normal controls, providing empirical evidence for decreased functional integration in AD dementia and MCI.
Collapse
Affiliation(s)
- Liqun Kuang
- School of Computer Science and TechnologyNorth University of ChinaTaiyuanShanxiChina
- School of Computing, Informatics, and Decision Systems EngineeringArizona State UniversityTempeArizona
| | - Xie Han
- School of Computer Science and TechnologyNorth University of ChinaTaiyuanShanxiChina
| | - Kewei Chen
- Banner Alzheimer's InstitutePhoenixArizona
| | | | | | - Yalin Wang
- School of Computing, Informatics, and Decision Systems EngineeringArizona State UniversityTempeArizona
| | | |
Collapse
|