1
|
Jiao CN, Shang J, Li F, Cui X, Wang YL, Gao YL, Liu JX. Diagnosis-Guided Deep Subspace Clustering Association Study for Pathogenetic Markers Identification of Alzheimer's Disease Based on Comparative Atlases. IEEE J Biomed Health Inform 2024; 28:3029-3041. [PMID: 38427553 DOI: 10.1109/jbhi.2024.3372294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
The roles of brain region activities and genotypic functions in the pathogenesis of Alzheimer's disease (AD) remain unclear. Meanwhile, current imaging genetics methods are difficult to identify potential pathogenetic markers by correlation analysis between brain network and genetic variation. To discover disease-related brain connectome from the specific brain structure and the fine-grained level, based on the Automated Anatomical Labeling (AAL) and human Brainnetome atlases, the functional brain network is first constructed for each subject. Specifically, the upper triangle elements of the functional connectivity matrix are extracted as connectivity features. The clustering coefficient and the average weighted node degree are developed to assess the significance of every brain area. Since the constructed brain network and genetic data are characterized by non-linearity, high-dimensionality, and few subjects, the deep subspace clustering algorithm is proposed to reconstruct the original data. Our multilayer neural network helps capture the non-linear manifolds, and subspace clustering learns pairwise affinities between samples. Moreover, most approaches in neuroimaging genetics are unsupervised learning, neglecting the diagnostic information related to diseases. We presented a label constraint with diagnostic status to instruct the imaging genetics correlation analysis. To this end, a diagnosis-guided deep subspace clustering association (DDSCA) method is developed to discover brain connectome and risk genetic factors by integrating genotypes with functional network phenotypes. Extensive experiments prove that DDSCA achieves superior performance to most association methods and effectively selects disease-relevant genetic markers and brain connectome at the coarse-grained and fine-grained levels.
Collapse
|
2
|
Huang W, Tan K, Zhang Z, Hu J, Dong S. A Review of Fusion Methods for Omics and Imaging Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:74-93. [PMID: 35044920 DOI: 10.1109/tcbb.2022.3143900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The development of omics data and biomedical images has greatly advanced the progress of precision medicine in diagnosis, treatment, and prognosis. The fusion of omics and imaging data, i.e., omics-imaging fusion, offers a new strategy for understanding complex diseases. However, due to a variety of issues such as the limited number of samples, high dimensionality of features, and heterogeneity of different data types, efficiently learning complementary or associated discriminative fusion information from omics and imaging data remains a challenge. Recently, numerous machine learning methods have been proposed to alleviate these problems. In this review, from the perspective of fusion levels and fusion methods, we first provide an overview of preprocessing and feature extraction methods for omics and imaging data, and comprehensively analyze and summarize the basic forms and variations of commonly used and newly emerging fusion methods, along with their advantages, disadvantages and the applicable scope. We then describe public datasets and compare experimental results of various fusion methods on the ADNI and TCGA datasets. Finally, we discuss future prospects and highlight remaining challenges in the field.
Collapse
|
3
|
Song P, Wang Y, Yuan X, Wang S, Song X. Exploring Brain Structural and Functional Biomarkers in Schizophrenia via Brain-Network-Constrained Multi-View SCCA. Front Neurosci 2022; 16:879703. [PMID: 35794950 PMCID: PMC9252525 DOI: 10.3389/fnins.2022.879703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
Recent studies have proved that dynamic regional measures extracted from the resting-state functional magnetic resonance imaging, such as the dynamic fractional amplitude of low-frequency fluctuation (d-fALFF), could provide a great insight into brain dynamic characteristics of the schizophrenia. However, the unimodal feature is limited for delineating the complex patterns of brain deficits. Thus, functional and structural imaging data are usually analyzed together for uncovering the neural mechanism of schizophrenia. Investigation of neural function-structure coupling enables to find the potential biomarkers and further helps to understand the biological basis of schizophrenia. Here, a brain-network-constrained multi-view sparse canonical correlation analysis (BN-MSCCA) was proposed to explore the intrinsic associations between brain structure and dynamic brain function. Specifically, the d-fALFF was first acquired based on the sliding window method, whereas the gray matter map was computed based on voxel-based morphometry analysis. Then, the region-of-interest (ROI)-based features were extracted and further selected by performing the multi-view sparse canonical correlation analysis jointly with the diagnosis information. Moreover, the brain-network-based structural constraint was introduced to prompt the detected biomarkers more interpretable. The experiments were conducted on 191 patients with schizophrenia and 191 matched healthy controls. Results showed that the BN-MSCCA could identify the critical ROIs with more sparse canonical weight patterns, which are corresponding to the specific brain networks. These are biologically meaningful findings and could be treated as the potential biomarkers. The proposed method also obtained a higher canonical correlation coefficient for the testing data, which is more consistent with the results on training data, demonstrating its promising capability for the association identification. To demonstrate the effectiveness of the potential clinical applications, the detected biomarkers were further analyzed on a schizophrenia-control classification task and a correlation analysis task. The experimental results showed that our method had a superior performance with a 5-8% increment in accuracy and 6-10% improvement in area under the curve. Furthermore, two of the top-ranked biomarkers were significantly negatively correlated with the positive symptom score of Positive and Negative Syndrome Scale (PANSS). Overall, the proposed method could find the association between brain structure and dynamic brain function, and also help to identify the biological meaningful biomarkers of schizophrenia. The findings enable our further understanding of this disease.
Collapse
Affiliation(s)
- Peilun Song
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Yaping Wang
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Xiuxia Yuan
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, China
| | - Shuying Wang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Zhou J, Qiu Y, Chen S, Liu L, Liao H, Chen H, Lv S, Li X. A Novel Three-Stage Framework for Association Analysis Between SNPs and Brain Regions. Front Genet 2020; 11:572350. [PMID: 33193677 PMCID: PMC7542238 DOI: 10.3389/fgene.2020.572350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Motivation: At present, a number of correlation analysis methods between SNPs and ROIs have been devised to explore the pathogenic mechanism of Alzheimer's disease. However, some of the deficiencies inherent in these methods, including lack of statistical efficacy and biological meaning. This study aims at addressing issues: insufficient correlation by previous methods (relative high regression error) and the lack of biological meaning in association analysis. Results: In this paper, a novel three-stage SNPs and ROIs correlation analysis framework is proposed. Firstly, clustering algorithm is applied to remove the potential linkage unbalanced structure of two SNPs. Then, the group sparse model is used to introduce prior information such as gene structure and linkage unbalanced structure to select feature SNPs. After the above steps, each SNP has a weight vector corresponding to each ROI, and the importance of SNPs can be judged according to the weights in the feature vector, and then the feature SNPs can be selected. Finally, for the selected feature SNPS, a support vector machine regression model is used to implement the prediction of the ROIs phenotype values. The experimental results under multiple performance measures show that the proposed method has better accuracy than other methods.
Collapse
Affiliation(s)
- Juan Zhou
- School of Software, East China Jiaotong University, Nanchang, China
| | - Yangping Qiu
- School of Software, East China Jiaotong University, Nanchang, China
| | - Shuo Chen
- School of Software, East China Jiaotong University, Nanchang, China
| | - Liyue Liu
- School of Software, East China Jiaotong University, Nanchang, China
| | - Huifa Liao
- School of Software, East China Jiaotong University, Nanchang, China
| | - Hongli Chen
- School of Software, East China Jiaotong University, Nanchang, China
| | - Shanguo Lv
- School of Software, East China Jiaotong University, Nanchang, China
| | - Xiong Li
- School of Software, East China Jiaotong University, Nanchang, China
| |
Collapse
|
5
|
Zhuang X, Yang Z, Cordes D. A technical review of canonical correlation analysis for neuroscience applications. Hum Brain Mapp 2020; 41:3807-3833. [PMID: 32592530 PMCID: PMC7416047 DOI: 10.1002/hbm.25090] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/23/2020] [Indexed: 12/11/2022] Open
Abstract
Collecting comprehensive data sets of the same subject has become a standard in neuroscience research and uncovering multivariate relationships among collected data sets have gained significant attentions in recent years. Canonical correlation analysis (CCA) is one of the powerful multivariate tools to jointly investigate relationships among multiple data sets, which can uncover disease or environmental effects in various modalities simultaneously and characterize changes during development, aging, and disease progressions comprehensively. In the past 10 years, despite an increasing number of studies have utilized CCA in multivariate analysis, simple conventional CCA dominates these applications. Multiple CCA-variant techniques have been proposed to improve the model performance; however, the complicated multivariate formulations and not well-known capabilities have delayed their wide applications. Therefore, in this study, a comprehensive review of CCA and its variant techniques is provided. Detailed technical formulation with analytical and numerical solutions, current applications in neuroscience research, and advantages and limitations of each CCA-related technique are discussed. Finally, a general guideline in how to select the most appropriate CCA-related technique based on the properties of available data sets and particularly targeted neuroscience questions is provided.
Collapse
Affiliation(s)
- Xiaowei Zhuang
- Cleveland Clinic Lou Ruvo Center for Brain HealthLas VegasNevadaUSA
| | - Zhengshi Yang
- Cleveland Clinic Lou Ruvo Center for Brain HealthLas VegasNevadaUSA
| | - Dietmar Cordes
- Cleveland Clinic Lou Ruvo Center for Brain HealthLas VegasNevadaUSA
- University of ColoradoBoulderColoradoUSA
- Department of Brain HealthUniversity of NevadaLas VegasNevadaUSA
| |
Collapse
|
6
|
Shen L, Thompson PM. Brain Imaging Genomics: Integrated Analysis and Machine Learning. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2020; 108:125-162. [PMID: 31902950 PMCID: PMC6941751 DOI: 10.1109/jproc.2019.2947272] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Brain imaging genomics is an emerging data science field, where integrated analysis of brain imaging and genomics data, often combined with other biomarker, clinical and environmental data, is performed to gain new insights into the phenotypic, genetic and molecular characteristics of the brain as well as their impact on normal and disordered brain function and behavior. It has enormous potential to contribute significantly to biomedical discoveries in brain science. Given the increasingly important role of statistical and machine learning in biomedicine and rapidly growing literature in brain imaging genomics, we provide an up-to-date and comprehensive review of statistical and machine learning methods for brain imaging genomics, as well as a practical discussion on method selection for various biomedical applications.
Collapse
Affiliation(s)
- Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90232, USA
| |
Collapse
|