1
|
Zhao F, Wu Z, Wang L, Lin W, Xia S, Li G. Learning 4D Infant Cortical Surface Atlas with Unsupervised Spherical Networks. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2021; 12902:262-272. [PMID: 36053245 PMCID: PMC9432861 DOI: 10.1007/978-3-030-87196-3_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spatiotemporal (4D) cortical surface atlas during infancy plays an important role for surface-based visualization, normalization and analysis of the dynamic early brain development. Conventional atlas construction methods typically rely on classical group-wise registration on sub-populations and ignore longitudinal constraints, thus having three main issues: 1) constructing templates at discrete time points; 2) resulting in longitudinal inconsistency among different age's atlases; and 3) taking extremely long runtime. To address these issues, in this paper, we propose a fast unsupervised learning-based surface atlas construction framework incorporating longitudinal constraints to enforce the within-subject temporal correspondence in the atlas space. To well handle the difficulties of learning large deformations, we propose a multi-level multimodal spherical registration network to perform cortical surface registration in a coarse-to-fine manner. Thus, only small deformations need to be estimated at each resolution level using the registration network, which further improves registration accuracy and atlas quality. Our constructed 4D infant cortical surface atlas based on 625 longitudinal scans from 291 infants is temporally continuous, in contrast to the state-of-the-art UNC 4D Infant Surface Atlas, which only provides the atlases at a few discrete sparse time points. By evaluating the intra- and inter-subject spatial normalization accuracy after alignment onto the atlas, our atlas demonstrates more detailed and fine-grained cortical patterns, thus leading to higher accuracy in surface registration.
Collapse
Affiliation(s)
- Fenqiang Zhao
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhengwang Wu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Li Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shunren Xia
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China gang
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Tu Y, Mi L, Zhang W, Zhang H, Zhang J, Fan Y, Goradia D, Chen K, Caselli RJ, Reiman EM, Gu X, Wang Y. Computing Univariate Neurodegenerative Biomarkers with Volumetric Optimal Transportation: A Pilot Study. Neuroinformatics 2020; 18:531-548. [PMID: 32253701 PMCID: PMC7502473 DOI: 10.1007/s12021-020-09459-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Changes in cognitive performance due to neurodegenerative diseases such as Alzheimer's disease (AD) are closely correlated to the brain structure alteration. A univariate and personalized neurodegenerative biomarker with strong statistical power based on magnetic resonance imaging (MRI) will benefit clinical diagnosis and prognosis of neurodegenerative diseases. However, few biomarkers of this type have been developed, especially those that are robust to image noise and applicable to clinical analyses. In this paper, we introduce a variational framework to compute optimal transportation (OT) on brain structural MRI volumes and develop a univariate neuroimaging index based on OT to quantify neurodegenerative alterations. Specifically, we compute the OT from each image to a template and measure the Wasserstein distance between them. The obtained Wasserstein distance, Wasserstein Index (WI) for short to specify the distance to a template, is concise, informative and robust to random noise. Comparing to the popular linear programming-based OT computation method, our framework makes use of Newton's method, which makes it possible to compute WI in large-scale datasets. Experimental results, on 314 subjects (140 Aβ + AD and 174 Aβ- normal controls) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) baseline dataset, provide preliminary evidence that the proposed WI is correlated with a clinical cognitive measure (the Mini-Mental State Examination (MMSE) score), and it is able to identify group difference and achieve a good classification accuracy, outperforming two other popular univariate indices including hippocampal volume and entorhinal cortex thickness. The current pilot work suggests the application of WI as a potential univariate neurodegenerative biomarker.
Collapse
Affiliation(s)
- Yanshuai Tu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, P.O. Box 878809, Tempe, AZ, 85287, USA
| | - Liang Mi
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, P.O. Box 878809, Tempe, AZ, 85287, USA
| | - Wen Zhang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, P.O. Box 878809, Tempe, AZ, 85287, USA
| | - Haomeng Zhang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, P.O. Box 878809, Tempe, AZ, 85287, USA
| | - Junwei Zhang
- Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
| | - Yonghui Fan
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, P.O. Box 878809, Tempe, AZ, 85287, USA
| | | | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | | | | | - Xianfeng Gu
- Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, P.O. Box 878809, Tempe, AZ, 85287, USA.
| |
Collapse
|