1
|
Li M, Tian F, Liang S, Wang Q, Shu X, Guo Y, Wang Y. M4S-Net: a motion-enhanced shape-aware semi-supervised network for echocardiography sequence segmentation. Med Biol Eng Comput 2025:10.1007/s11517-025-03330-0. [PMID: 39994151 DOI: 10.1007/s11517-025-03330-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
Sequence segmentation of echocardiograms is of great significance for the diagnosis and treatment of cardiovascular diseases. However, the low quality of ultrasound imaging and the complexity of cardiac motion pose great challenges to it. In addition, the difficulty and cost of labeling echocardiography sequences limit the performance of supervised learning methods. In this paper, we proposed a Motion-enhanced Shape-aware Semi-supervised Sequence Segmentation Network named M4S-Net. First, multi-level shape priors are used to enhance the model's shape representation capabilities, overcoming the low image quality and improving single-frame segmentation. Then, a motion-enhanced optimization module utilizes optical flows to assist segmentation in a geometric sense, which robustly responds to the complex motions and ensures the temporal consistency of sequence segmentation. A hybrid loss function is devised to maximize the effectiveness of each module and further improve the temporal stability of predicted masks. Furthermore, the parameter-sharing strategy allows it to perform sequence segmentation in a semi-supervised manner. Massive experiments on both public and in-house datasets show that M4S-Net outperforms the state-of-the-art methods in both spatial and temporal segmentation performance. A downstream apical rocking recognition task based on M4S-Net also achieves an AUC of 0.944, which significantly exceeds specialized physicians.
Collapse
Affiliation(s)
- Mingshan Li
- Department of Electronic Engineering, Fudan University, Shanghai, 200433, China
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai, 200032, China
| | - Fangyan Tian
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Disease, Shanghai Institute of Medical Imaging, Shanghai, China
| | - Shuyu Liang
- Department of Electronic Engineering, Fudan University, Shanghai, 200433, China
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai, 200032, China
| | - Qin Wang
- Department of Electronic Engineering, Fudan University, Shanghai, 200433, China
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai, 200032, China
| | - Xianhong Shu
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Disease, Shanghai Institute of Medical Imaging, Shanghai, China.
| | - Yi Guo
- Department of Electronic Engineering, Fudan University, Shanghai, 200433, China.
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai, 200032, China.
| | - Yuanyuan Wang
- Department of Electronic Engineering, Fudan University, Shanghai, 200433, China.
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai, 200032, China.
| |
Collapse
|
2
|
Lin J, Xie W, Kang L, Wu H. Dynamic-Guided Spatiotemporal Attention for Echocardiography Video Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3843-3855. [PMID: 38771692 DOI: 10.1109/tmi.2024.3403687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Left ventricle (LV) endocardium segmentation in echocardiography video has received much attention as an important step in quantifying LV ejection fraction. Most existing methods are dedicated to exploiting temporal information on top of 2D convolutional networks. In addition to single appearance semantic learning, some research attempted to introduce motion cues through the optical flow estimation (OFE) task to enhance temporal consistency modeling. However, OFE in these methods is tightly coupled to LV endocardium segmentation, resulting in noisy inter-frame flow prediction, and post-optimization based on these flows accumulates errors. To address these drawbacks, we propose dynamic-guided spatiotemporal attention (DSA) for semi-supervised echocardiography video segmentation. We first fine-tune the off-the-shelf OFE network RAFT on echocardiography data to provide dynamic information. Taking inter-frame flows as additional input, we use a dual-encoder structure to extract motion and appearance features separately. Based on the connection between dynamic continuity and semantic consistency, we propose a bilateral feature calibration module to enhance both features. For temporal consistency modeling, the DSA is proposed to aggregate neighboring frame context using deformable attention that is realized by offsets grid attention. Dynamic information is introduced into DSA through a bilateral offset estimation module to effectively combine with appearance semantics and predict attention offsets, thereby guiding semantic-based spatiotemporal attention. We evaluated our method on two popular echocardiography datasets, CAMUS and EchoNet-Dynamic, and achieved state-of-the-art.
Collapse
|
3
|
Ta K, Ahn SS, Thorn SL, Stendahl JC, Zhang X, Langdon J, Staib LH, Sinusas AJ, Duncan JS. Multi-Task Learning for Motion Analysis and Segmentation in 3D Echocardiography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2010-2020. [PMID: 38231820 PMCID: PMC11514714 DOI: 10.1109/tmi.2024.3355383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Characterizing left ventricular deformation and strain using 3D+time echocardiography provides useful insights into cardiac function and can be used to detect and localize myocardial injury. To achieve this, it is imperative to obtain accurate motion estimates of the left ventricle. In many strain analysis pipelines, this step is often accompanied by a separate segmentation step; however, recent works have shown both tasks to be highly related and can be complementary when optimized jointly. In this work, we present a multi-task learning network that can simultaneously segment the left ventricle and track its motion between multiple time frames. Two task-specific networks are trained using a composite loss function. Cross-stitch units combine the activations of these networks by learning shared representations between the tasks at different levels. We also propose a novel shape-consistency unit that encourages motion propagated segmentations to match directly predicted segmentations. Using a combined synthetic and in-vivo 3D echocardiography dataset, we demonstrate that our proposed model can achieve excellent estimates of left ventricular motion displacement and myocardial segmentation. Additionally, we observe strong correlation of our image-based strain measurements with crystal-based strain measurements as well as good correspondence with SPECT perfusion mappings. Finally, we demonstrate the clinical utility of the segmentation masks in estimating ejection fraction and sphericity indices that correspond well with benchmark measurements.
Collapse
|
4
|
Evain E, Sun Y, Faraz K, Garcia D, Saloux E, Gerber BL, De Craene M, Bernard O. Motion Estimation by Deep Learning in 2D Echocardiography: Synthetic Dataset and Validation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1911-1924. [PMID: 35157582 DOI: 10.1109/tmi.2022.3151606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Motion estimation in echocardiography plays an important role in the characterization of cardiac function, allowing the computation of myocardial deformation indices. However, there exist limitations in clinical practice, particularly with regard to the accuracy and robustness of measurements extracted from images. We therefore propose a novel deep learning solution for motion estimation in echocardiography. Our network corresponds to a modified version of PWC-Net which achieves high performance on ultrasound sequences. In parallel, we designed a novel simulation pipeline allowing the generation of a large amount of realistic B-mode sequences. These synthetic data, together with strategies during training and inference, were used to improve the performance of our deep learning solution, which achieved an average endpoint error of 0.07 ± 0.06 mm per frame and 1.20 ± 0.67 mm between ED and ES on our simulated dataset. The performance of our method was further investigated on 30 patients from a publicly available clinical dataset acquired from a GE system. The method showed promise by achieving a mean absolute error of the global longitudinal strain of 2.5 ± 2.1% and a correlation of 0.77 compared to GLS derived from manual segmentation, much better than one of the most efficient methods in the state-of-the-art (namely the FFT-Xcorr block-matching method). We finally evaluated our method on an auxiliary dataset including 30 patients from another center and acquired with a different system. Comparable results were achieved, illustrating the ability of our method to maintain high performance regardless of the echocardiographic data processed.
Collapse
|
5
|
Ta K, Ahn SS, Stendahl JC, Langdon J, Sinusas AJ, Duncan JS. Simultaneous Segmentation and Motion Estimation of Left Ventricular Myocardium in 3D Echocardiography Using Multi-task Learning. STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART. STACOM (WORKSHOP) 2022; 13131:123-131. [PMID: 35759335 PMCID: PMC9221412 DOI: 10.1007/978-3-030-93722-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Motion estimation and segmentation are both critical steps in identifying and assessing myocardial dysfunction, but are traditionally treated as unique tasks and solved as separate steps. However, many motion estimation techniques rely on accurate segmentations. It has been demonstrated in the computer vision and medical image analysis literature that both these tasks may be mutually beneficial when solved simultaneously. In this work, we propose a multi-task learning network that can concurrently predict volumetric segmentations of the left ventricle and estimate motion between 3D echocardiographic image pairs. The model exploits complementary latent features between the two tasks using a shared feature encoder with task-specific decoding branches. Anatomically inspired constraints are incorporated to enforce realistic motion patterns. We evaluate our proposed model on an in vivo 3D echocardiographic canine dataset. Results suggest that coupling these two tasks in a learning framework performs favorably when compared against single task learning and other alternative methods.
Collapse
Affiliation(s)
- Kevinminh Ta
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Shawn S Ahn
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - John C Stendahl
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Jonathan Langdon
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Albert J Sinusas
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - James S Duncan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Electrical Engineering, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| |
Collapse
|
6
|
Wu M, Awasthi N, Rad NM, Pluim JPW, Lopata RGP. Advanced Ultrasound and Photoacoustic Imaging in Cardiology. SENSORS (BASEL, SWITZERLAND) 2021; 21:7947. [PMID: 34883951 PMCID: PMC8659598 DOI: 10.3390/s21237947] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022]
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of death worldwide. An effective management and treatment of CVDs highly relies on accurate diagnosis of the disease. As the most common imaging technique for clinical diagnosis of the CVDs, US imaging has been intensively explored. Especially with the introduction of deep learning (DL) techniques, US imaging has advanced tremendously in recent years. Photoacoustic imaging (PAI) is one of the most promising new imaging methods in addition to the existing clinical imaging methods. It can characterize different tissue compositions based on optical absorption contrast and thus can assess the functionality of the tissue. This paper reviews some major technological developments in both US (combined with deep learning techniques) and PA imaging in the application of diagnosis of CVDs.
Collapse
Affiliation(s)
- Min Wu
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands; (N.M.R.); (R.G.P.L.)
| | - Navchetan Awasthi
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands; (N.M.R.); (R.G.P.L.)
- Medical Image Analysis Group (IMAG/e), Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands;
| | - Nastaran Mohammadian Rad
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands; (N.M.R.); (R.G.P.L.)
- Medical Image Analysis Group (IMAG/e), Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands;
| | - Josien P. W. Pluim
- Medical Image Analysis Group (IMAG/e), Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands;
| | - Richard G. P. Lopata
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands; (N.M.R.); (R.G.P.L.)
| |
Collapse
|
7
|
Ta K, Ahn SS, Stendahl JC, Sinusas AJ, Duncan JS. SHAPE-REGULARIZED UNSUPERVISED LEFT VENTRICULAR MOTION NETWORK WITH SEGMENTATION CAPABILITY IN 3D+TIME ECHOCARDIOGRAPHY. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2021; 2021:536-540. [PMID: 34168721 DOI: 10.1109/isbi48211.2021.9433888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Accurate motion estimation and segmentation of the left ventricle from medical images are important tasks for quantitative evaluation of cardiovascular health. Echocardiography offers a cost-efficient and non-invasive modality for examining the heart, but provides additional challenges for automated analyses due to the low signal-to-noise ratio inherent in ultrasound imaging. In this work, we propose a shape regularized convolutional neural network for estimating dense displacement fields between sequential 3D B-mode echocardiography images with the capability of also predicting left ventricular segmentation masks. Manually traced segmentations are used as a guide to assist in the unsupervised estimation of displacement between a source and a target image while also serving as labels to train the network to additionally predict segmentations. To enforce realistic cardiac motion patterns, a flow incompressibility term is also incorporated to penalize divergence. Our proposed network is evaluated on an in vivo canine 3D+t B-mode echocardiographic dataset. It is shown that the shape regularizer improves the motion estimation performance of the network and our overall model performs favorably against competing methods.
Collapse
Affiliation(s)
- Kevinminh Ta
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Shawn S Ahn
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - John C Stendahl
- Department of Internal Medicine (Cardiology), Yale University, New Haven, CT, USA
| | - Albert J Sinusas
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.,Department of Internal Medicine (Cardiology), Yale University, New Haven, CT, USA.,Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - James S Duncan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.,Department of Electrical Engineering, Yale University, New Haven, CT, USA.,Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| |
Collapse
|
8
|
Ahn SS, Ta K, Thorn S, Langdon J, Sinusas AJ, Duncan JS. Multi-frame Attention Network for Left Ventricle Segmentation in 3D Echocardiography. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2021; 12901:348-357. [PMID: 34729554 PMCID: PMC8560213 DOI: 10.1007/978-3-030-87193-2_33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Echocardiography is one of the main imaging modalities used to assess the cardiovascular health of patients. Among the many analyses performed on echocardiography, segmentation of left ventricle is crucial to quantify the clinical measurements like ejection fraction. However, segmentation of left ventricle in 3D echocardiography remains a challenging and tedious task. In this paper, we propose a multi-frame attention network to improve the performance of segmentation of left ventricle in 3D echocardiography. The multi-frame attention mechanism allows highly correlated spatiotemporal features in a sequence of images that come after a target image to be used to augment the performance of segmentation. Experimental results shown on 51 in vivo porcine 3D+time echocardiography images show that utilizing correlated spatiotemporal features significantly improves the performance of left ventricle segmentation when compared to other standard deep learning-based medical image segmentation models.
Collapse
Affiliation(s)
- Shawn S. Ahn
- Department of Biomedical Engineering, Yale University, New
Haven, CT, USA
| | - Kevinminh Ta
- Department of Biomedical Engineering, Yale University, New
Haven, CT, USA
| | - Stephanie Thorn
- Section of Cardiovascular Medicine, Department of Internal
Medicine, Yale University, New Haven, CT, USA
| | - Jonathan Langdon
- Department of Radiology and Biomedical Imaging, Yale
University, New Haven, CT, USA
| | - Albert J. Sinusas
- Section of Cardiovascular Medicine, Department of Internal
Medicine, Yale University, New Haven, CT, USA,Department of Electrical Engineering, Yale University, New
Haven, CT, USA,Department of Radiology and Biomedical Imaging, Yale
University, New Haven, CT, USA
| | - James S. Duncan
- Department of Biomedical Engineering, Yale University, New
Haven, CT, USA,Department of Electrical Engineering, Yale University, New
Haven, CT, USA,Department of Radiology and Biomedical Imaging, Yale
University, New Haven, CT, USA
| |
Collapse
|
9
|
Ta K, Ahn SS, Stendahl JC, Sinusas AJ, Duncan JS. A Semi-supervised Joint Network for Simultaneous Left Ventricular Motion Tracking and Segmentation in 4D Echocardiography. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2020; 12266:468-477. [PMID: 33094292 PMCID: PMC7576886 DOI: 10.1007/978-3-030-59725-2_45] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This work presents a novel deep learning method to combine segmentation and motion tracking in 4D echocardiography. The network iteratively trains a motion branch and a segmentation branch. The motion branch is initially trained entirely unsupervised and learns to roughly map the displacements between a source and a target frame. The estimated displacement maps are then used to generate pseudo-ground truth labels to train the segmentation branch. The labels predicted by the trained segmentation branch are fed back into the motion branch and act as landmarks to help retrain the branch to produce smoother displacement estimations. These smoothed out displacements are then used to obtain smoother pseudo-labels to retrain the segmentation branch. Additionally, a biomechanically-inspired incompressibility constraint is implemented in order to encourage more realistic cardiac motion. The proposed method is evaluated against other approaches using synthetic and in-vivo canine studies. Both the segmentation and motion tracking results of our model perform favorably against competing methods.
Collapse
Affiliation(s)
- Kevinminh Ta
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Shawn S Ahn
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - John C Stendahl
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Albert J Sinusas
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - James S Duncan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Electrical Engineering, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| |
Collapse
|