1
|
Lafreniere S, Padasdao B, Konh B. Closed-Loop Control of a Tendon-Driven Active Needle for Tip Tracking at Desired Bending Angle for High-Dose-Rate Prostate Brachytherapy. ROBOTICA 2024; 42:2511-2527. [PMID: 39584068 PMCID: PMC11581187 DOI: 10.1017/s0263574724000900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Prostate cancer is the second most common malignancy in American men. High-dose-rate brachytherapy is a popular treatment technique in which a large, localized radiation dose is used to kill cancer. Utilization of curvilinear catheter implantation inside the prostate gland to provide access channels to host the radiation source has shown superiority in terms of improved dosimetric constraints compared to straight needles. To this aim, we have introduced an active needle to curve inside the prostate conformal to the patient's specific anatomical relationship for improved dose distribution to the prostate and reduced toxicity to the organs at risk (OARs). This work presents closed-loop control of our tendon-driven active needle in water medium and air using the position feedback of the tip obtained in real time from an ultrasound (US) or an electromagnetic (EM) tracking sensor, respectively. The active needle consists of a compliant flexure section to realize bending in two directions via actuation of two internal tendons. Tracking errors using US and EM tracker are estimated and compared. Results show that the bending angle of the active needle could be controlled using position feedback of the US or the EM tracking system with a bending angle error of less than 1.00 degree, when delay is disregarded. It is concluded that the actuation system and controller, presented in this work, are able to realize a desired bending angle at the active needle tip with reasonable accuracy paving the path for tip tracking and manipulation control evaluations in a prostate brachytherapy.
Collapse
Affiliation(s)
| | - Blayton Padasdao
- Department of Mechanical Engineering, University of Hawaii at Manoa
| | - Bardia Konh
- Department of Mechanical Engineering, University of Hawaii at Manoa
| |
Collapse
|
2
|
Duan Y, Ling J, Feng Z, Ye T, Sun T, Zhu Y. A Survey of Needle Steering Approaches in Minimally Invasive Surgery. Ann Biomed Eng 2024; 52:1492-1517. [PMID: 38530535 DOI: 10.1007/s10439-024-03494-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
In virtue of a curved insertion path inside tissues, needle steering techniques have revealed the potential with the assistance of medical robots and images. The superiority of this technique has been preliminarily verified with several maneuvers: target realignment, obstacle circumvention, and multi-target access. However, the momentum of needle steering approaches in the past decade leads to an open question-"How to choose an applicable needle steering approach for a specific clinical application?" This survey discusses this question in terms of design choices and clinical considerations, respectively. In view of design choices, this survey proposes a hierarchical taxonomy of current needle steering approaches. Needle steering approaches of different manipulations and designs are classified to systematically review the design choices and their influences on clinical treatments. In view of clinical consideration, this survey discusses the steerability and acceptability of the current needle steering approaches. On this basis, the pros and cons of the current needle steering approaches are weighed and their suitable applications are summarized. At last, this survey concluded with an outlook of the needle steering techniques, including the potential clinical applications and future developments in mechanical design.
Collapse
Affiliation(s)
- Yuzhou Duan
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Jie Ling
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Zhao Feng
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
- Wuhan University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Tingting Ye
- Industrial and Systems Engineering Department, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Tairen Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuchuan Zhu
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
3
|
Padasdao B, Konh B. A mechanics-based model for a tendon-driven active needle navigating inside a multiple-layer tissue. J Robot Surg 2024; 18:146. [PMID: 38554177 PMCID: PMC11034936 DOI: 10.1007/s11701-024-01900-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/02/2024] [Indexed: 04/01/2024]
Abstract
Percutaneous minimally invasive procedures such brachytherapy and biopsy require a flexible active needle for precise movement inside tissue and accurate placement at target positions for higher success rates for diagnosis and treatment, respectively. In a previous work, we presented a tendon-driven active needle to navigate inside tissue. This work presents a new model to predict the deflection of the tendon-driven needle while steering in a multiple-layer soft tissue. A multi-layer phantom tissue with different localized stiffness was developed for needle insertion tests followed by indentation tests to identify its mechanical properties. Using a robot that inserts and actively bends the tendon-driven needle inside the soft tissue while simultaneously tracking the needle through ultrasound imaging, various experiments were conducted for model validation. The proposed model was verified by comparing the simulation results to the empirical data. The results demonstrated the accuracy of the model in predicting the tendon-driven needle deflection in multiple-layer (different stiffness) soft tissue.
Collapse
Affiliation(s)
| | - Bardia Konh
- University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
4
|
de Vries M, Wijntjes M, Sikorski J, Moreira P, van de Berg NJ, van den Dobbelsteen JJ, Misra S. MR-guided HDR prostate brachytherapy with teleoperated steerable needles. J Robot Surg 2023; 17:2461-2469. [PMID: 37480476 PMCID: PMC10492758 DOI: 10.1007/s11701-023-01676-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/08/2023] [Indexed: 07/24/2023]
Abstract
Conformity of tumour volumes and dose plans in prostate brachytherapy (BT) can be constrained by unwanted needle deflections, needle access restrictions and visualisation limitations. This work validates the feasibility of teleoperated robotic control of an active steerable needle using magnetic resonance (MR) for guidance. With this system, perturbations can be counteracted and critical structures can be circumvented to access currently inaccessible areas. The system comprises of (1) a novel steerable needle, (2) the minimally invasive robotics in an MR environment (MIRIAM) system, and (3) the daVinci Research Kit (dVRK). MR scans provide visual feedback to the operator controlling the dVRK. Needle steering is performed along curved trajectories to avoid the urethra towards targets (representing tumour tissue) in a prostate phantom with a targeting error of 1.2 ± 1.0 mm. This work shows the potential clinical applicability of active needle steering for prostate BT with a teleoperated robotic system in an MR environment.
Collapse
Affiliation(s)
- M de Vries
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands.
| | - M Wijntjes
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - J Sikorski
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - P Moreira
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - N J van de Berg
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
- Department of Gynaecological Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - J J van den Dobbelsteen
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - S Misra
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Rabiei M, Ko SY, Podder TK, Lederer J, Konh B. HDR Brachytherapy Planning using Active Needles - Preliminary Investigation on Dose Planning. PROCEEDINGS OF THE ... IEEE/RAS-EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL ROBOTICS AND BIOMECHATRONICS. IEEE/RAS-EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL ROBOTICS AND BIOMECHATRONICS 2022; 2022:10.1109/biorob52689.2022.9925426. [PMID: 36632440 PMCID: PMC9831751 DOI: 10.1109/biorob52689.2022.9925426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this study we present a new approach to plan a high-dose-rate (HDR) prostate brachytherapy (BT) using active needles recently developed by our group. The active needles realize bi-directional bending inside the tissue, and thereby more compliant with the patient's anatomy compared with conventional straight needles. A computational method is presented to first generate a needle arrangement configuration based on the patient's prostate anatomy. The needle arrangement is generated to cover the prostate volume, providing accessible channels for the radiation source during a HDR BT. The needle arrangement configuration avoids healthy organs and prevents needle collision inside the body. Then a treatment plan is proposed to ensure sufficient prescribed dosage to the whole prostate gland. The method is applied to a prostate model reconstructed from an anonymized patient to show the feasibility of this method. Finally, the active needle's capability to generate the required bending is shown. We have shown that our method is able to automatically generate needle arrangement configuration using active needles, and plan for a treatment that meets the dose objectives while using fewer needles (about 20% of conventional straight needles) than the conventional HDR BT performed by straight needles.
Collapse
Affiliation(s)
- Mahsa Rabiei
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI USA
| | - Seong Young Ko
- School of Mechanical Engineering, Chonnam National University, South Korea
| | - Tarun K Podder
- Department of Radiation Oncology, Case Western Reserve University School of Medicine, Cleveland, OH USA
| | - John Lederer
- Department of Surgery, John A Burns School of Medicine, University of Hawaii, Honolulu, HI USA
| | - Bardia Konh
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI USA
| |
Collapse
|
6
|
Padasdao B, Batsaikhan Z, Lafreniere S, Rabiei M, Konh B. Modeling and Operator Control of a Robotic Tool for Bidirectional Manipulation in Targeted Prostate Biopsy. ... INTERNATIONAL SYMPOSIUM ON MEDICAL ROBOTICS. INTERNATIONAL SYMPOSIUM ON MEDICAL ROBOTICS 2022; 2022:10.1109/ismr48347.2022.9807514. [PMID: 36644643 PMCID: PMC9836363 DOI: 10.1109/ismr48347.2022.9807514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This work introduces design, manipulation, and operator control of a bidirectional robotic tool for minimally invasive targeted prostate biopsy. The robotic tool is purposed to be used as a compliant flexure section of active biopsy needles. The design of the robotic tool comprises of a flexure section fabricated on a nitinol tube that enables bidirectional bending via actuation of two internal tendons. The statics of the flexure section is presented and validated with experimental data. Finally, the capability of the robotic tool to reach targeted positions inside prostate gland is evaluated.
Collapse
Affiliation(s)
- Blayton Padasdao
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Zolboo Batsaikhan
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Samuel Lafreniere
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Mahsa Rabiei
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Bardia Konh
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|