1
|
Chen Y, Li D, Liu Y, Hu L, Qi Y, Huang Y, Zhang Z, Chen T, Wang C, Zhong S, Ding J. Optimal frequency determination for terahertz technology-based detection of colitis-related cancer in mice. JOURNAL OF BIOPHOTONICS 2023; 16:e202300193. [PMID: 37556310 DOI: 10.1002/jbio.202300193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/18/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023]
Abstract
Colorectal cancer is a prevalent malignancy globally, often linked to chronic colitis. Terahertz technology, with its noninvasive and fingerprint spectroscopic properties, holds promise in disease diagnosis. This study aimed to explore terahertz technology's application in colitis-associated cancer using a mouse model. Mouse colorectal tissues were transformed into paraffin-embedded blocks for histopathological analysis using HE staining. Terahertz transmission spectroscopy was performed on the tissue blocks. By comparing terahertz absorption differences, specific frequency bands were identified as optimal for distinguishing cancerous and normal tissues. The study revealed that terahertz spectroscopy effectively differentiates colitis-related cancers from normal tissues. Remarkably, 1.8 THz emerged as a potential optimal frequency for diagnosing colorectal cancer in mice. This suggests the potential for rapid histopathological diagnosis of colorectal cancer using terahertz technology.
Collapse
Affiliation(s)
- Yong Chen
- Department of Gastroenterology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Dan Li
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yaling Liu
- Department of Gastroenterology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Liwen Hu
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yuanlin Qi
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou, China
| | - Yi Huang
- Fujian Provincial Key Laboratory of Terahertz Functional Devices and Intelligent Sensing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China
| | - Zhenghao Zhang
- Fujian Provincial Key Laboratory of Terahertz Functional Devices and Intelligent Sensing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China
| | - Tingyan Chen
- Department of Gastroenterology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - ChengDang Wang
- Department of Gastroenterology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shuncong Zhong
- Fujian Provincial Key Laboratory of Terahertz Functional Devices and Intelligent Sensing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China
| | - Jian Ding
- Department of Gastroenterology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
2
|
Richter M, Loth Y, Wigger AK, Nordhoff D, Rachinger N, Weisenstein C, Bosserhoff AK, Bolívar PH. High specificity THz metamaterial-based biosensor for label-free transcription factor detection in melanoma diagnostics. Sci Rep 2023; 13:20708. [PMID: 38001098 PMCID: PMC10673904 DOI: 10.1038/s41598-023-46876-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
In this work, we present a promising diagnostic tool for melanoma diagnosis. With the proposed terahertz biosensor, it was possible to selectively and sensitively detect the early growth response protein 2, a transcription factor with an increased activity in melanoma cells, from a complex sample of cellular proteins. Fundamentally, the sensor belongs to the frequency selective surface type metamaterials and consists of a two-dimensional array of asymmetrically, doubly split ring resonator unit cells. The single elements are slits in a metallic layer and are complemented by an undercut etch. This allows a selective functionalization of the active area of the sensor and increases the sensitivity towards the target analyte. Hereby, specific detection of a defined transcription factor is feasible.
Collapse
Affiliation(s)
- Merle Richter
- High Frequency and Quantum Electronics, University of Siegen, 57076, Siegen, Germany.
| | - Yannik Loth
- High Frequency and Quantum Electronics, University of Siegen, 57076, Siegen, Germany
| | - Anna Katharina Wigger
- High Frequency and Quantum Electronics, University of Siegen, 57076, Siegen, Germany
| | - Daniela Nordhoff
- High Frequency and Quantum Electronics, University of Siegen, 57076, Siegen, Germany
| | - Nicole Rachinger
- Biochemistry and Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Christian Weisenstein
- High Frequency and Quantum Electronics, University of Siegen, 57076, Siegen, Germany
| | - Anja Katrin Bosserhoff
- Biochemistry and Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Peter Haring Bolívar
- High Frequency and Quantum Electronics, University of Siegen, 57076, Siegen, Germany
| |
Collapse
|
3
|
Shi S, Yuan S, Zhou J, Jiang P. Terahertz technology and its applications in head and neck diseases. iScience 2023; 26:107060. [PMID: 37534152 PMCID: PMC10391736 DOI: 10.1016/j.isci.2023.107060] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
The terahertz (THz) radiation refers to electromagnetic waves between infrared and millimeter waves. THz technology has shown a significant potential for medical diagnosis and biomedical applications over the past three decades. Therefore, exploring the biological effects of THz waves has become an important new field in life sciences. Specifically, THz radiation has been proved to be able to diagnose and treat several head and neck diseases. In this review, we primarily discuss the biological characteristics of THz waves and clinical applications of THz technology, focusing on the research progress of THz technology in head and neck diseases (brain cancer, hypopharyngeal cancer, oral diseases, thyroid nodules, Alzheimer's disease, eyes diseases, and otitis). The future application perspectives of THz technologies in head and neck diseases are also highlighted and proposed.
Collapse
Affiliation(s)
- Shenggan Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuqin Yuan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Zhou
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Peidu Jiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Zhang M, Liao J, Jia Z, Qin C, Zhang L, Wang H, Liu Y, Jiang C, Han M, Li J, Wang K, Wang X, Bu H, Yao J, Liu Y. High Dynamic Range Dual-Modal White Light Imaging Improves the Accuracy of Tumor Bed Sampling After Neoadjuvant Therapy for Breast Cancer. Am J Clin Pathol 2023; 159:293-303. [PMID: 36799717 DOI: 10.1093/ajcp/aqac167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/01/2022] [Indexed: 02/18/2023] Open
Abstract
OBJECTIVES Accurate evaluation of residual cancer burden remains challenging because of the lack of appropriate techniques for tumor bed sampling. This study evaluated the application of a white light imaging system to help pathologists differentiate the components and location of tumor bed in specimens. METHODS The high dynamic range dual-mode white light imaging (HDR-DWI) system was developed to capture antiglare reflection and multiexposure HDR transmission images. It was tested in 60 specimens of modified radical mastectomy after neoadjuvant therapy. We observed the differential transmittance among tumor tissue, fibrosis tissue, and adipose tissue. RESULTS The sensitivity and specificity of HDR-DWI were compared with x-ray or visual examination to determine whether HDR-DWI was superior in identifying tumor beds. We found that tumor tissue had lower transmittance (0.12 ± 0.03) than fibers (0.15 ± 0.04) and fats (0.27 ± 0.07) (P < .01). CONCLUSIONS HDR-DWI was more sensitive in identifying fiber and tumor tissues than cabinet x-ray and visual observation (P < .01). In addition, HDR-DWI could identify more fibrosis areas than the currently used whole slide imaging did in 12 samples (12/60). We have determined that HDR-DWI can provide more in-depth tumor bed information than x-ray and visual examination do, which will help prevent diagnostic errors in tumor bed sampling.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jun Liao
- AI Lab, Tencent, Shenzhen, China
| | - Zhanli Jia
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | | | - Lingling Zhang
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Han Wang
- AI Lab, Tencent, Shenzhen, China
| | - Yao Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | | | - Mengxue Han
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jinze Li
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kun Wang
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinran Wang
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hong Bu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | | | - Yueping Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Zhan X, Liu Y, Chen Z, Luo J, Yang S, Yang X. Revolutionary approaches for cancer diagnosis by terahertz-based spectroscopy and imaging. Talanta 2023; 259:124483. [PMID: 37019007 DOI: 10.1016/j.talanta.2023.124483] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/23/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
Most tumors are easily missed and misdiagnosed due to the lack of specific clinical signs and symptoms in the early stage. Thus, an accurate, rapid and reliable early tumor detection method is highly desirable. The application of terahertz (THz) spectroscopy and imaging in biomedicine has made remarkable progress in the past two decades, which addresses the shortcomings of existing technologies and provides an alternative for early tumor diagnosis. Although issues such as size mismatch and strong absorption of THz waves by water have set hurdles for cancer diagnosis by THz technology, innovative materials and biosensors in recent years have led to possibilities for new THz biosensing and imaging methods. In this article, we reviewed the issues that need to be solved before THz technology is used for tumor-related biological sample detection and clinical auxiliary diagnosis. We focused on the recent research progress of THz technology, with an emphasis on biosensing and imaging. Finally, the application of THz spectroscopy and imaging for tumor diagnosis in clinical practice and the main challenges in this process were also mentioned. Collectively, THz-based spectroscopy and imaging reviewed here is envisioned as a cutting-edge approach for cancer diagnosis.
Collapse
Affiliation(s)
- Xinyu Zhan
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yu Liu
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400037, China
| | - Zhiguo Chen
- Gastroenterology Department, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jie Luo
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Sha Yang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Xiang Yang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
6
|
Xiao L, Xie Y, Gao S, Li J, Wu P. Generalized Radar Range Equation Applied to the Whole Field Region. SENSORS (BASEL, SWITZERLAND) 2022; 22:4608. [PMID: 35746388 PMCID: PMC9229489 DOI: 10.3390/s22124608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Most terahertz (THz) radar systems can only work in the near-field region, because the THz source power is limited and the size of the target scattered near field is up to tens of kilometers. Such conditions will result in the conventional radar range equation being unsuitable. Therefore, the near-field radar cross section (RCS) formula is given according to the numerical simulation on different targets. By modifying the parameters in the near field, including the gain of radar antennas and the RCS of targets, the generalized radar range equation is proposed. The THz radar working efficiency in the whole range and the simulation of the near-field RCS simulation model were employed to validate its effectiveness. Through comparison with the radar range equation, it can be concluded that the calculation results of the proposed equation are smaller in the near field, and the outcomes in the far field are identical. The proposed generalized radar range equation can be applied to the whole radiation area including the near field and the far field. Furthermore, more complicated real targets are calculated according to the generalized radar range equation and it can be extended from the submillimeter wave band to a much wider band range. Finally, the near-field radar theory is established, which shows its potential application to the radar cross section estimation in the extremely high frequency and fine design of THz radar systems.
Collapse
Affiliation(s)
- Luyin Xiao
- School of Electronic and Information Engineering, Beihang University, Beijing 100191, China; (L.X.); (Y.X.); (S.G.)
- Beijing Key Laboratory of Microwave Sensing and Security Applications, Beihang University, Beijing 100191, China
- Shenzhen Institute of Beihang University, Shenzhen 518000, China
| | - Yongjun Xie
- School of Electronic and Information Engineering, Beihang University, Beijing 100191, China; (L.X.); (Y.X.); (S.G.)
- Beijing Key Laboratory of Microwave Sensing and Security Applications, Beihang University, Beijing 100191, China
- Shenzhen Institute of Beihang University, Shenzhen 518000, China
| | - Shida Gao
- School of Electronic and Information Engineering, Beihang University, Beijing 100191, China; (L.X.); (Y.X.); (S.G.)
- Beijing Key Laboratory of Microwave Sensing and Security Applications, Beihang University, Beijing 100191, China
- Shenzhen Institute of Beihang University, Shenzhen 518000, China
| | - Junbao Li
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150080, China;
| | - Peiyu Wu
- School of Electronic and Information Engineering, Beihang University, Beijing 100191, China; (L.X.); (Y.X.); (S.G.)
- Beijing Key Laboratory of Microwave Sensing and Security Applications, Beihang University, Beijing 100191, China
- Shenzhen Institute of Beihang University, Shenzhen 518000, China
| |
Collapse
|
7
|
Wu L, Wang Y, Li H, Wang Z, Ge M, Xu D, Yao J. Optimization for continuous-wave terahertz reflection imaging for biological tissues. JOURNAL OF BIOPHOTONICS 2022; 15:e202100245. [PMID: 34553838 DOI: 10.1002/jbio.202100245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/02/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Continuous-wave terahertz reflection imaging is a potential tool for biological tissues. Based on our home-made continuous-wave terahertz reflection imaging system, the effect of both polarization mode and reflection window on the imaging performance is studied theoretically and experimentally, showing good agreement. By taking obtaining sample information and image contrast into consideration, p-polarized terahertz waves are recommended. Moreover, considering the sample boundary identification and the image contrast, selection criteria for reflection window are proposed. This work will help to improve the performance of continuous-wave terahertz reflection imaging and accelerate the THz imaging in biological application.
Collapse
Affiliation(s)
- Limin Wu
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronic Engineering, Tianjin University, Tianjin, China
- Key Laboratory of Optoelectronics Information Technology (Ministry of Education), Tianjin University, Tianjin, China
| | - Yuye Wang
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronic Engineering, Tianjin University, Tianjin, China
- Key Laboratory of Optoelectronics Information Technology (Ministry of Education), Tianjin University, Tianjin, China
| | - Haibin Li
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronic Engineering, Tianjin University, Tianjin, China
- Key Laboratory of Optoelectronics Information Technology (Ministry of Education), Tianjin University, Tianjin, China
| | - Zelong Wang
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronic Engineering, Tianjin University, Tianjin, China
- Key Laboratory of Optoelectronics Information Technology (Ministry of Education), Tianjin University, Tianjin, China
| | - Meilan Ge
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronic Engineering, Tianjin University, Tianjin, China
- Key Laboratory of Optoelectronics Information Technology (Ministry of Education), Tianjin University, Tianjin, China
| | - Degang Xu
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronic Engineering, Tianjin University, Tianjin, China
- Key Laboratory of Optoelectronics Information Technology (Ministry of Education), Tianjin University, Tianjin, China
| | - Jianquan Yao
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronic Engineering, Tianjin University, Tianjin, China
- Key Laboratory of Optoelectronics Information Technology (Ministry of Education), Tianjin University, Tianjin, China
| |
Collapse
|
8
|
Wu L, Wang Y, Liao B, Zhao L, Chen K, Ge M, Li H, Chen T, Feng H, Xu D, Yao J. Temperature dependent terahertz spectroscopy and imaging of orthotopic brain gliomas in mouse models. BIOMEDICAL OPTICS EXPRESS 2022; 13:93-104. [PMID: 35154856 PMCID: PMC8803010 DOI: 10.1364/boe.445597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 05/07/2023]
Abstract
Terahertz (THz) spectroscopy and imaging were used to differentiate brain gliomas in a mouse model at different temperatures. The THz spectral difference between brain glioma and normal brain tissues at -10°C and 20°C was obtained in the 0.4-2.53 THz range. The absorption coefficient and refractive index values varied with both temperature and frequency. The fresh ex vivo brain glioma tissues were mapped by THz attenuated total reflection (ATR) imaging at 2.52 THz in the temperature range from -20°C to 35°C. Compared with histological examination, THz-ATR imaging could better display the tumor areas at a higher temperature. And the averaged reflectivity of normal tissue was increased with the increase of temperature, whereas the tumor region showed a decreasing trend. Thus, the larger THz imaging difference between glioma and normal tissues could be obtained. Moreover, in vivo brain gliomas in mouse models could also be differentiated clearly from normal brain tissues using THz-ATR imaging at 2.52 THz under room temperature. The THz-ATR images corresponded well with those of visual and hematoxylin and eosin (H&E) stained images. Therefore, this pilot study demonstrated that temperature dependence THz spectroscopy and imaging are helpful to the brain gliomas in mouse model detection.
Collapse
Affiliation(s)
- Limin Wu
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yuye Wang
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Bin Liao
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lu Zhao
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Kai Chen
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Meilan Ge
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Haibin Li
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Tunan Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hua Feng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Degang Xu
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jianquan Yao
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
9
|
Amini T, Jahangiri F, Ameri Z, Hemmatian MA. A Review of Feasible Applications of THz Waves in Medical Diagnostics and Treatments. J Lasers Med Sci 2021; 12:e92. [PMID: 35155177 PMCID: PMC8837828 DOI: 10.34172/jlms.2021.92] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
Abstract
Introduction: Terahertz (THz) waves with frequencies in the range of 0.1 to 10 THz are electromagnetic radiation with growing applications in various fields of science and technology. Attractive features of this radiation have brought out many novel possibilities for medical diagnostics and treatments with considerable advantages compared to other conventional methods. Methods: In this paper, we present a review of more recent reports on practical applications of THz radiation for diagnostic, biosensing and clinical treatments. The review includes the diagnosis of breast, skin, mouth, cervical, lungs, small intestine, prostate, colon, and stomach cancers, the evaluation of biomolecules, the detection of genetic mutations, the determination of burn depth, the diagnosis of tooth decay, diabetes, and emotional-psychological states, the evaluation of corneal water to diagnose visual diseases, and wound healing monitoring. Further, it embraces the use of THz therapy in reducing the size of the tumor, treating skin cancer, and healing burn wounds, cardiovascular disease, corneal epithelium, angina, and THz heating. Results: This review has emphasized the capabilities of THz waves as a novel tool for future clinical diagnostics and treatments. Conclusion: The paper provides a comprehensive understanding of the feasible potential application of THz waves for clinical purposes and its advantages in comparison with other conventional tools.
Collapse
Affiliation(s)
- Tahereh Amini
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Fazel Jahangiri
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Zoha Ameri
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Amin Hemmatian
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Park H, Son JH. Machine Learning Techniques for THz Imaging and Time-Domain Spectroscopy. SENSORS (BASEL, SWITZERLAND) 2021; 21:1186. [PMID: 33567605 PMCID: PMC7914669 DOI: 10.3390/s21041186] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/28/2021] [Accepted: 02/03/2021] [Indexed: 01/04/2023]
Abstract
Terahertz imaging and time-domain spectroscopy have been widely used to characterize the properties of test samples in various biomedical and engineering fields. Many of these tasks require the analysis of acquired terahertz signals to extract embedded information, which can be achieved using machine learning. Recently, machine learning techniques have developed rapidly, and many new learning models and learning algorithms have been investigated. Therefore, combined with state-of-the-art machine learning techniques, terahertz applications can be performed with high performance that cannot be achieved using modeling techniques that precede the machine learning era. In this review, we introduce the concept of machine learning and basic machine learning techniques and examine the methods for performance evaluation. We then summarize representative examples of terahertz imaging and time-domain spectroscopy that are conducted using machine learning.
Collapse
Affiliation(s)
- Hochong Park
- Department of Electronics Engineering, Kwangwoon University, Seoul 01897, Korea;
| | - Joo-Hiuk Son
- Department of Physics, University of Seoul, Seoul 02504, Korea
| |
Collapse
|
11
|
Nikitkina AI, Bikmulina PY, Gafarova ER, Kosheleva NV, Efremov YM, Bezrukov EA, Butnaru DV, Dolganova IN, Chernomyrdin NV, Cherkasova OP, Gavdush AA, Timashev PS. Terahertz radiation and the skin: a review. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200356VSSR. [PMID: 33583155 PMCID: PMC7881098 DOI: 10.1117/1.jbo.26.4.043005] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/19/2021] [Indexed: 05/02/2023]
Abstract
SIGNIFICANCE Terahertz (THz) radiation has demonstrated a great potential in biomedical applications over the past three decades, mainly due to its non-invasive and label-free nature. Among all biological specimens, skin tissue is an optimal sample for the application of THz-based methods because it allows for overcoming some intrinsic limitations of the technique, such as a small penetration depth (0.1 to 0.3 mm for the skin, on average). AIM We summarize the modern research results achieved when THz technology was applied to the skin, considering applications in both imaging/detection and treatment/modulation of the skin constituents. APPROACH We perform a review of literature and analyze the recent research achievements in THz applications for skin diagnosis and investigation. RESULTS The reviewed results demonstrate the possibilities of THz spectroscopy and imaging, both pulsed and continuous, for diagnosis of skin melanoma and non-melanoma cancer, dysplasia, scars, and diabetic condition, mainly based on the analysis of THz optical properties. The possibility of modulating cell activity and treatment of various diseases by THz-wave exposure is shown as well. CONCLUSIONS The rapid development of THz technologies and the obtained research results for skin tissue highlight the potential of THz waves as a research and therapeutic instrument. The perspectives on the use of THz radiation are related to both non-invasive diagnostics and stimulation and control of different processes in a living skin tissue for regeneration and cancer treatment.
Collapse
Affiliation(s)
| | - Polina Y. Bikmulina
- Sechenov University, Institute for Regenerative Medicine, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare,” Moscow, Russia
| | - Elvira R. Gafarova
- Sechenov University, Institute for Regenerative Medicine, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare,” Moscow, Russia
| | - Nastasia V. Kosheleva
- Sechenov University, Institute for Regenerative Medicine, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare,” Moscow, Russia
- Federal State Budgetary Scientific Institution “Institute of General Pathology and Pathophysiology,” Moscow, Russia
| | - Yuri M. Efremov
- Sechenov University, Institute for Regenerative Medicine, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare,” Moscow, Russia
| | - Evgeny A. Bezrukov
- Sechenov University, Institute for Urology and Reproductive Health, Moscow, Russia
| | - Denis V. Butnaru
- Sechenov University, Institute for Urology and Reproductive Health, Moscow, Russia
| | - Irina N. Dolganova
- Sechenov University, Institute for Regenerative Medicine, Moscow, Russia
- Russian Academy of Sciences, Institute of Solid State Physics, Chernogolovka, Russia
- Bauman Moscow State Technical University, Moscow, Russia
| | - Nikita V. Chernomyrdin
- Sechenov University, Institute for Regenerative Medicine, Moscow, Russia
- Russian Academy of Sciences, Prokhorov General Physics Institute, Moscow, Russia
| | - Olga P. Cherkasova
- Russian Academy of Sciences, Institute of Laser Physics of the Siberian Branch, Novosibirsk, Russia
- Novosibirsk State Technical University, Novosibirsk, Russia
| | - Arsenii A. Gavdush
- Russian Academy of Sciences, Prokhorov General Physics Institute, Moscow, Russia
| | - Peter S. Timashev
- Sechenov University, Institute for Regenerative Medicine, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare,” Moscow, Russia
- N. N. Semenov Institute of Chemical Physics, Department of Polymers and Composites, Moscow, Russia
- Lomonosov Moscow State University, Chemistry Department, Moscow, Russia
- Address all correspondence to Peter S. Timashev,
| |
Collapse
|
12
|
Zotov AK, Gavdush AA, Katyba GM, Safonova LP, Chernomyrdin NV, Dolganova IN. In situ terahertz monitoring of an ice ball formation during tissue cryosurgery: a feasibility test. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200372SSR. [PMID: 33506657 PMCID: PMC7839928 DOI: 10.1117/1.jbo.26.4.043003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/07/2021] [Indexed: 05/03/2023]
Abstract
SIGNIFICANCE Uncontrolled cryoablation of tissues is a strong reason limiting the wide application of cryosurgery and cryotherapy due to the certain risks of unpredicted damaging of healthy tissues. The existing guiding techniques are unable to be applied in situ or provide insufficient spatial resolution. Terahertz (THz) pulsed spectroscopy (TPS) based on sensitivity of THz time-domain signal to changes of tissue properties caused by freezing could form the basis of an instrument for observation of the ice ball formation. AIM The ability of TPS for in situ monitoring of tissue freezing depth is studied experimentally. APPROACH A THz pulsed spectrometer operated in reflection mode and equipped with a cooled sample holder and ex vivo samples of bovine visceral adipose tissue is applied. Signal spectrograms are used to analyze the changes of THz time-domain signals caused by the interface between frozen and unfrozen tissue parts. RESULTS Experimental observation of TPS signals reflected from freezing tissue demonstrates the feasibility of TPS to detect ice ball formation up to 657-μm depth. CONCLUSIONS TPS could become the promising instrument for in situ control of cryoablation, enabling observation of the freezing front propagation, which could find applications in various fields of oncology, regenerative medicine, and THz biophotonics.
Collapse
Affiliation(s)
- Arsen K. Zotov
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia
| | - Arsenii A. Gavdush
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Gleb M. Katyba
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia
- Bauman Moscow State Technical University, Moscow, Russia
| | | | - Nikita V. Chernomyrdin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
- Bauman Moscow State Technical University, Moscow, Russia
- Sechenov First Moscow State Medical University (Sechenov University), Institute for Regenerative Medicine, Moscow, Russia
| | - Irina N. Dolganova
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia
- Bauman Moscow State Technical University, Moscow, Russia
- Sechenov First Moscow State Medical University (Sechenov University), Institute for Regenerative Medicine, Moscow, Russia
- Address all correpsondence to Irina N. Dolganova,
| |
Collapse
|
13
|
Musina GR, Dolganova IN, Chernomyrdin NV, Gavdush AA, Ulitko VE, Cherkasova OP, Tuchina DK, Nikitin PV, Alekseeva AI, Bal NV, Komandin GA, Kurlov VN, Tuchin VV, Zaytsev KI. Optimal hyperosmotic agents for tissue immersion optical clearing in terahertz biophotonics. JOURNAL OF BIOPHOTONICS 2020; 13:e202000297. [PMID: 32881362 DOI: 10.1002/jbio.202000297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 05/05/2023]
Abstract
In this work, a thorough analysis of hyperosmotic agents for the immersion optical clearing (IOC) in terahertz (THz) range was performed. It was aimed at the selection of agents for the efficient enhancement of penetration depth of THz waves into biological tissues. Pulsed spectroscopy in the frequency range of 0.1 to 2.5 THz was applied for investigation of the optical properties of common IOC agents. Using the collimated transmission spectroscopy in visible range, binary diffusion coefficients of tissue water and agent in ex vivo rat brain tissue were measured. IOC agents were objectively compared using two-dimensional nomogram, accounting for their THz-wave absorption coefficients and binary diffusion coefficients. The results of this study demonstrate an interplay between the penetration depth enhancement and the diffusion rate and allow for pointing out glycerol as an optimal agent among the considered ones for particular applications in THz biophotonics.
Collapse
Affiliation(s)
- Guzel R Musina
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Irina N Dolganova
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russian Federation
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Nikita V Chernomyrdin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russian Federation
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Arsenii A Gavdush
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladislav E Ulitko
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russian Federation
| | - Olga P Cherkasova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russian Federation
- Institute of Laser Physics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
- National Research Tomsk State University, Tomsk, Russian Federation
| | - Daria K Tuchina
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russian Federation
- National Research Tomsk State University, Tomsk, Russian Federation
- Saratov State University, Saratov, Russian Federation
| | - Pavel V Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russian Federation
- Burdenko Neurosurgery Institute, Moscow, Russian Federation
| | - Anna I Alekseeva
- Research Institute of Human Morphology, Moscow, Russian Federation
| | - Natalia V Bal
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Gennady A Komandin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir N Kurlov
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russian Federation
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Valery V Tuchin
- National Research Tomsk State University, Tomsk, Russian Federation
- Saratov State University, Saratov, Russian Federation
- Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Saratov, Russian Federation
| | - Kirill I Zaytsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russian Federation
- Bauman Moscow State Technical University, Moscow, Russian Federation
| |
Collapse
|
14
|
Zhang T, Nazarov R, Popov AP, Demchenko PS, Bykov AV, Grigorev RO, Kuzikova AV, Soboleva VY, Zykov DV, Meglinski IV, Khodzitskiy MK. Development of oral cancer tissue-mimicking phantom based on polyvinyl chloride plastisol and graphite for terahertz frequencies. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:123002. [PMID: 33205633 PMCID: PMC7670095 DOI: 10.1117/1.jbo.25.12.123002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
SIGNIFICANCE A new concept of a biotissue phantom for terahertz (THz) biomedical applications is needed for reliable and long-term usage. AIM We aimed to develop a new type of biotissue phantom without water content and with controllable THz optical properties by applying graphite powders into a polyvinyl chloride plastisol (PVCP) matrix and to give a numerical description to the THz optical properties of the phantoms using the Bruggeman model (BM) of the effective medium theory (EMT). APPROACH The THz optical properties of graphite and the PVCP matrix were measured using THz time-domain spectroscopy, which works in the frequency range from 0.1 to 1 THz. Two phantoms with 10% and 12.5% graphite were fabricated to evaluate the feasibility of describing phantoms using the EMT. The EMT then was used to determine the concentration of graphite required to mimic the THz optical properties of human cancerous and healthy oral tissue. RESULTS The phantom with 16.7% of graphite has the similar THz optical properties as human cancerous oral tissue in the frequency range of 0.2 to 0.7 THz. The THz optical properties of the phantom with 21.9% of graphite are close to those of human healthy oral tissue in the bandwidth from 0.6 to 0.8 THz. Both the refractive index and absorption coefficient of the samples increase with an increase of graphite concentration. The BM of the EMT was used as the numerical model to describe the THz optical properties of the phantoms. The relative error of the BM for the refractive index estimation and the absorption coefficient is up to 4% and 8%, respectively. CONCLUSIONS A water-free biotissue phantom that mimics the THz optical properties of human cancerous oral tissue was developed. With 21.9% of graphite, the phantom also mimics human healthy oral tissue in a narrow frequency range. The BM proved to be a suitable numerical model of the phantom.
Collapse
Affiliation(s)
- Tianmiao Zhang
- ITMO University, School of Photonics, Terahertz Biomedicine Laboratory, Saint Petersburg, Russia
- Tydex LLC, Saint Petersburg, Russia
| | - Ravshanjon Nazarov
- ITMO University, School of Photonics, Terahertz Biomedicine Laboratory, Saint Petersburg, Russia
| | - Alexey P. Popov
- University of Oulu, Faculty of Information Technology and Electrical Engineering, Optoelectronics and Measurement Techniques Laboratory, Oulu, Finland
| | - Petr S. Demchenko
- ITMO University, School of Photonics, Terahertz Biomedicine Laboratory, Saint Petersburg, Russia
| | - Alexander V. Bykov
- University of Oulu, Faculty of Information Technology and Electrical Engineering, Optoelectronics and Measurement Techniques Laboratory, Oulu, Finland
| | - Roman O. Grigorev
- ITMO University, School of Photonics, Terahertz Biomedicine Laboratory, Saint Petersburg, Russia
| | - Anna V. Kuzikova
- ITMO University, School of Photonics, Terahertz Biomedicine Laboratory, Saint Petersburg, Russia
| | - Victoria Y. Soboleva
- ITMO University, School of Photonics, Terahertz Biomedicine Laboratory, Saint Petersburg, Russia
| | - Dmitry V. Zykov
- ITMO University, School of Photonics, Terahertz Biomedicine Laboratory, Saint Petersburg, Russia
| | - Igor V. Meglinski
- University of Oulu, Faculty of Information Technology and Electrical Engineering, Optoelectronics and Measurement Techniques Laboratory, Oulu, Finland
- Aston University, Aston Institute of Materials Research, School of Engineering and Applied Science, Birmingham, United Kingdom
- Aston University, School of Life and Health Sciences, Birmingham, United Kingdom
| | - Mikhail K. Khodzitskiy
- ITMO University, School of Photonics, Terahertz Biomedicine Laboratory, Saint Petersburg, Russia
| |
Collapse
|
15
|
Jeong SY, Cheon H, Lee D, Son JH. Determining terahertz resonant peaks of biomolecules in aqueous environment. OPTICS EXPRESS 2020; 28:3854-3863. [PMID: 32122047 DOI: 10.1364/oe.381529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/16/2020] [Indexed: 05/28/2023]
Abstract
The resonant peaks of biomolecules provide information on the molecules' physical and chemical properties. Although many biomolecules have resonant peaks in the terahertz region, it is difficult to observe their specific signals in aqueous environments. Hence, this paper proposes a method for determining these peaks. We found the specific resonant peaks of a modified nucleoside, 5-methlycytidine and modified HEK293T DNA in an aqueous solution through baseline correction. We evaluated the consistency of various fitting functions used for determining the peaks with various parameters. We separated two resonance peaks of 5-methlycytidine at 1.59 and 1.97 THz and for artificially methylated HEK293T DNA at 1.64 and 2.0 THz.
Collapse
|
16
|
Vilagosh Z, Lajevardipour A, Wood AW. Computational absorption and reflection studies of normal human skin at 0.45 THz. BIOMEDICAL OPTICS EXPRESS 2020; 11:417-431. [PMID: 32010525 PMCID: PMC6968741 DOI: 10.1364/boe.377424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 05/03/2023]
Abstract
Applications using terahertz (THz) frequency radiation will inevitably lead to increased human exposure. The power density and specific absorption rate (SAR) simulations of thin skin at 0.45 THz show the bulk of the energy being absorbed in the upper stratum spinosum, and the maximal temperature rise is in the lower stratum spinosum. There are regions of SAR increase of 100% above the local average at the stratum spinosum/stratum basale boundary. The dead Stratum Corneum layer protects underlying tissues in thick skin. Reflection studies suggest that acute angles and the use of polarised incident radiation may enhance the assessment of diabetic neuropathy.
Collapse
Affiliation(s)
- Zoltan Vilagosh
- Department of Health and Medical Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- Australian Centre for Electromagnetic Bioeffects Research, Australia
| | - Alireza Lajevardipour
- Department of Health and Medical Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- Australian Centre for Electromagnetic Bioeffects Research, Australia
| | - Andrew W. Wood
- Department of Health and Medical Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- Australian Centre for Electromagnetic Bioeffects Research, Australia
| |
Collapse
|
17
|
Sun Q, He Y, Liu K, Fan S, Parrott EPJ, Pickwell-MacPherson E. Recent advances in terahertz technology for biomedical applications. Quant Imaging Med Surg 2017; 7:345-355. [PMID: 28812001 DOI: 10.21037/qims.2017.06.02] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Terahertz instrumentation has improved significantly in recent years such that THz imaging systems have become more affordable and easier to use. THz systems can now be operated by non-THz experts greatly facilitating research into many potential applications. Due to the non-ionising nature of THz light and its high sensitivity to soft tissues, there is an increasing interest in biomedical applications including both in vivo and ex vivo studies. Additionally, research continues into understanding the origin of contrast and how to interpret terahertz biomedical images. This short review highlights some of the recent work in these areas and suggests some future research directions.
Collapse
Affiliation(s)
- Qiushuo Sun
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR, China
| | - Yuezhi He
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR, China
| | - Kai Liu
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR, China
| | - Shuting Fan
- School of Physics and Astrophysics (M013), The University of Western Australia Perth, WA 6009, Australia
| | - Edward P J Parrott
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR, China
| | - Emma Pickwell-MacPherson
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR, China
| |
Collapse
|
18
|
Park JY, Choi HJ, Cheon H, Cho SW, Lee S, Son JH. Terahertz imaging of metastatic lymph nodes using spectroscopic integration technique. BIOMEDICAL OPTICS EXPRESS 2017; 8:1122-1129. [PMID: 28271007 PMCID: PMC5330550 DOI: 10.1364/boe.8.001122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 05/04/2023]
Abstract
Terahertz (THz) imaging was used to differentiate the metastatic states of frozen lymph nodes (LNs) by using spectroscopic integration technique (SIT). The metastatic states were classified into three groups: healthy LNs, completely metastatic LNs, and partially metastatic LNs, which were obtained from three mice without infection and six mice infected with murine melanoma cells for 30 days and 15 days, respectively. Under histological examination, the healthy LNs and completely metastatic LNs were found to have a homogeneous cellular structure but the partially metastatic LNs had interfaces of the melanoma and healthy tissue. THz signals between the experimental groups were not distinguished at room temperature due to high attenuation by water in the tissues. However, a signal gap between the healthy and completely metastatic LNs was detected at freezing temperature. The signal gap could be enhanced by using SIT that is a signal processing method dichotomizing the signal difference between the healthy cells and melanoma cells with their normalized spectral integration. This technique clearly imaged the interfaces in the partially metastatic LNs, which could not be achieved by existing methods using a peak point or spectral value. The image resolution was high enough to recognize a metastatic area of about 0.7 mm size in the partially metastatic LNs. Therefore, this pilot study demonstrated that THz imaging of the frozen specimen using SIT can be used to diagnose the metastatic state of LNs for clinical application.
Collapse
Affiliation(s)
- Jae Yeon Park
- Department of Physics, University of Seoul, Seoul 130- 743, South Korea
| | - Hyuck Jae Choi
- Department of Radiology, Kangwon National University Hospital, Chuncheon, South Korea
| | - Hwayeong Cheon
- Department of Physics, University of Seoul, Seoul 130- 743, South Korea
| | - Seong Whi Cho
- Department of Radiology, Kangwon National University Hospital, Chuncheon, South Korea
| | - Seungkoo Lee
- Department of Anatomic Pathology, Kangwon National University Hospital, Chuncheon, South Korea
| | - Joo-Hiuk Son
- Department of Physics, University of Seoul, Seoul 130- 743, South Korea
| |
Collapse
|
19
|
Yamaguchi S, Fukushi Y, Kubota O, Itsuji T, Ouchi T, Yamamoto S. Origin and quantification of differences between normal and tumor tissues observed by terahertz spectroscopy. Phys Med Biol 2016; 61:6808-6820. [PMID: 27579610 DOI: 10.1088/0031-9155/61/18/6808] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The origin of the differences in the refractive index observed between normal and tumor tissues using terahertz spectroscopy has been described quantitatively. To estimate water content differences in tissues, we prepared fresh and paraffin-embedded samples from rats. An approximately 5% increase of water content in tumor tissues was calculated from terahertz time domain spectroscopy measurements compared to normal tissues. A greater than 15% increase in percentage of cell nuclei per unit area in tumor tissues was observed by hematoxylin and eosin stained samples, which generates a higher refractive index of biological components other than water. Both high water content and high cell density resulted in higher refractive index by approximately 0.05 in tumor tissues. It is predicted that terahertz spectroscopy can also be used to detect brain tumors in human tissue due to the same underlying mechanism as in rats.
Collapse
Affiliation(s)
- Sayuri Yamaguchi
- R&D Headquarters, Canon Inc., 3-30-2 Shimomaruko, Ohta-ku, Tokyo 146-8501, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Brain tumor imaging of rat fresh tissue using terahertz spectroscopy. Sci Rep 2016; 6:30124. [PMID: 27456312 PMCID: PMC4960480 DOI: 10.1038/srep30124] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/29/2016] [Indexed: 11/09/2022] Open
Abstract
Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue.
Collapse
|
21
|
Early detection of germinated wheat grains using terahertz image and chemometrics. Sci Rep 2016; 6:21299. [PMID: 26892180 PMCID: PMC4759576 DOI: 10.1038/srep21299] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/21/2016] [Indexed: 01/30/2023] Open
Abstract
In this paper, we propose a feasible tool that uses a terahertz (THz) imaging system for identifying wheat grains at different stages of germination. The THz spectra of the main changed components of wheat grains, maltose and starch, which were obtained by THz time spectroscopy, were distinctly different. Used for original data compression and feature extraction, principal component analysis (PCA) revealed the changes that occurred in the inner chemical structure during germination. Two thresholds, one indicating the start of the release of α-amylase and the second when it reaches the steady state, were obtained through the first five score images. Thus, the first five PCs were input for the partial least-squares regression (PLSR), least-squares support vector machine (LS-SVM), and back-propagation neural network (BPNN) models, which were used to classify seven different germination times between 0 and 48 h, with a prediction accuracy of 92.85%, 93.57%, and 90.71%, respectively. The experimental results indicated that the combination of THz imaging technology and chemometrics could be a new effective way to discriminate wheat grains at the early germination stage of approximately 6 h.
Collapse
|