Li H, Zhao C, Shao F, Li GZ, Wang X. A hybrid imputation approach for microarray missing value estimation.
BMC Genomics 2015;
16 Suppl 9:S1. [PMID:
26330180 PMCID:
PMC4547405 DOI:
10.1186/1471-2164-16-s9-s1]
[Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND
Missing data is an inevitable phenomenon in gene expression microarray experiments due to instrument failure or human error. It has a negative impact on performance of downstream analysis. Technically, most existing approaches suffer from this prevalent problem. Imputation is one of the frequently used methods for processing missing data. Actually many developments have been achieved in the research on estimating missing values. The challenging task is how to improve imputation accuracy for data with a large missing rate.
METHODS
In this paper, induced by the thought of collaborative training, we propose a novel hybrid imputation method, called Recursive Mutual Imputation (RMI). Specifically, RMI exploits global correlation information and local structure in the data, captured by two popular methods, Bayesian Principal Component Analysis (BPCA) and Local Least Squares (LLS), respectively. Mutual strategy is implemented by sharing the estimated data sequences at each recursive process. Meanwhile, we consider the imputation sequence based on the number of missing entries in the target gene. Furthermore, a weight based integrated method is utilized in the final assembling step.
RESULTS
We evaluate RMI with three state-of-art algorithms (BPCA, LLS, Iterated Local Least Squares imputation (ItrLLS)) on four publicly available microarray datasets. Experimental results clearly demonstrate that RMI significantly outperforms comparative methods in terms of Normalized Root Mean Square Error (NRMSE), especially for datasets with large missing rates and less complete genes.
CONCLUSIONS
It is noted that our proposed hybrid imputation approach incorporates both global and local information of microarray genes, which achieves lower NRMSE values against to any single approach only. Besides, this study highlights the need for considering the imputing sequence of missing entries for imputation methods.
Collapse