1
|
İsmail Mendi B, Kose K, Fleshner L, Adam R, Safai B, Farabi B, Atak MF. Artificial Intelligence in the Non-Invasive Detection of Melanoma. Life (Basel) 2024; 14:1602. [PMID: 39768310 PMCID: PMC11678477 DOI: 10.3390/life14121602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/05/2025] Open
Abstract
Skin cancer is one of the most prevalent cancers worldwide, with increasing incidence. Skin cancer is typically classified as melanoma or non-melanoma skin cancer. Although melanoma is less common than basal or squamous cell carcinomas, it is the deadliest form of cancer, with nearly 8300 Americans expected to die from it each year. Biopsies are currently the gold standard in diagnosing melanoma; however, they can be invasive, expensive, and inaccessible to lower-income individuals. Currently, suspicious lesions are triaged with image-based technologies, such as dermoscopy and confocal microscopy. While these techniques are useful, there is wide inter-user variability and minimal training for dermatology residents on how to properly use these devices. The use of artificial intelligence (AI)-based technologies in dermatology has emerged in recent years to assist in the diagnosis of melanoma that may be more accessible to all patients and more accurate than current methods of screening. This review explores the current status of the application of AI-based algorithms in the detection of melanoma, underscoring its potential to aid dermatologists in clinical practice. We specifically focus on AI application in clinical imaging, dermoscopic evaluation, algorithms that can distinguish melanoma from non-melanoma skin cancers, and in vivo skin imaging devices.
Collapse
Affiliation(s)
- Banu İsmail Mendi
- Department of Dermatology, Niğde Ömer Halisdemir University, Niğde 51000, Turkey
| | - Kivanc Kose
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA;
| | - Lauren Fleshner
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA; (L.F.); (R.A.); (B.S.); (B.F.)
| | - Richard Adam
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA; (L.F.); (R.A.); (B.S.); (B.F.)
| | - Bijan Safai
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA; (L.F.); (R.A.); (B.S.); (B.F.)
- Dermatology Department, NYC Health + Hospital/Metropolitan, New York, NY 10029, USA;
| | - Banu Farabi
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA; (L.F.); (R.A.); (B.S.); (B.F.)
- Dermatology Department, NYC Health + Hospital/Metropolitan, New York, NY 10029, USA;
- Dermatology Department, NYC Health + Hospital/South Brooklyn, Brooklyn, NY 11235, USA
| | - Mehmet Fatih Atak
- Dermatology Department, NYC Health + Hospital/Metropolitan, New York, NY 10029, USA;
| |
Collapse
|
2
|
Silva DFB, Firmino RT, Fugolin APP, Melo SLS, Nóbrega MTC, de Melo DP. Is thermography an effective screening tool for differentiating benign and malignant skin lesions in the head and neck? A systematic review. Arch Dermatol Res 2024; 316:404. [PMID: 38878184 DOI: 10.1007/s00403-024-03166-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/23/2024]
Abstract
The aim of this study was to assess, through a systematic review, the status of infrared thermography (IRT) as a diagnostic tool for skin neoplasms of the head and neck region and in order to validate its effectiveness in differentiating benign and malignant lesions. A search was carried out in the LILACS, PubMed/MEDLINE, SCOPUS, Web of Science and EMBASE databases including studies published between 2004 and 2024, written in the Latin-Roman alphabet. Accuracy studies with patients aged 18 years or over presenting benign and malignant lesions in the head and neck region that evaluated the performance of IRT in differentiating these lesions were included. Lesions of mesenchymal origin and studies that did not mention histopathological diagnosis were excluded. The systematic review protocol was registered in the PROSPERO database (CRD42023416079). Reviewers independently analyzed titles, abstracts, and full-texts. After extracting data, the risk of bias of the selected studies was assessed using the QUADAS - 2 tool. Results were narratively synthesized and the certainty of evidence was measured using the GRADE approach. The search resulted in 1,587 records and three studies were included. Only one of the assessed studies used static IRT, while the other two studies used cold thermal stress. All studies had an uncertain risk of bias. In general, studies have shown wide variation in the accuracy of IRT for differentiating between malignant and benign lesions, with a low level of certainty in the evidence for both specificity and sensitivity.
Collapse
Affiliation(s)
- Diego Filipe Bezerra Silva
- Graduate Program in Dentistry, State University of Paraíba, Bairro Universitário, R. Baraúnas, 351, Campina Grande, 58429-500, PB, Brazil.
| | - Ramon Targino Firmino
- Academic Unit of Biological Sciences, Federal University of Campina Grande, Patos, 58700-970, Paraíba, Brazil
| | | | - Saulo L Sousa Melo
- Department of Oral and Craniofacial Sciences, School of Dentistry, Oregon Health & Science University, Oregon, USA
| | - Marina Tavares Costa Nóbrega
- Graduate Program in Dentistry, State University of Paraíba, Bairro Universitário, R. Baraúnas, 351, Campina Grande, 58429-500, PB, Brazil
| | - Daniela Pita de Melo
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| |
Collapse
|
3
|
Wei ML, Tada M, So A, Torres R. Artificial intelligence and skin cancer. Front Med (Lausanne) 2024; 11:1331895. [PMID: 38566925 PMCID: PMC10985205 DOI: 10.3389/fmed.2024.1331895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Artificial intelligence is poised to rapidly reshape many fields, including that of skin cancer screening and diagnosis, both as a disruptive and assistive technology. Together with the collection and availability of large medical data sets, artificial intelligence will become a powerful tool that can be leveraged by physicians in their diagnoses and treatment plans for patients. This comprehensive review focuses on current progress toward AI applications for patients, primary care providers, dermatologists, and dermatopathologists, explores the diverse applications of image and molecular processing for skin cancer, and highlights AI's potential for patient self-screening and improving diagnostic accuracy for non-dermatologists. We additionally delve into the challenges and barriers to clinical implementation, paths forward for implementation and areas of active research.
Collapse
Affiliation(s)
- Maria L. Wei
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, United States
- Dermatology Service, San Francisco VA Health Care System, San Francisco, CA, United States
| | - Mikio Tada
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, United States
| | - Alexandra So
- School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Rodrigo Torres
- Dermatology Service, San Francisco VA Health Care System, San Francisco, CA, United States
| |
Collapse
|
4
|
Tarimo SA, Jang MA, Ngasa EE, Shin HB, Shin H, Woo J. WBC YOLO-ViT: 2 Way - 2 stage white blood cell detection and classification with a combination of YOLOv5 and vision transformer. Comput Biol Med 2024; 169:107875. [PMID: 38154163 DOI: 10.1016/j.compbiomed.2023.107875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/24/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
Accurate detection and classification of white blood cells, otherwise known as leukocytes, play a critical role in diagnosing and monitoring various illnesses. However, conventional methods, such as manual classification by trained professionals, must be revised in terms of accuracy, efficiency, and potential bias. Moreover, applying deep learning techniques to detect and classify white blood cells using microscopic images is challenging owing to limited data, resolution noise, irregular shapes, and varying colors from different sources. This study presents a novel approach integrating object detection and classification for numerous type-white blood cell. We designed a 2-way approach to use two types of images: WBC and nucleus. YOLO (fast object detection) and ViT (powerful image representation capabilities) are effectively integrated into 16 classes. The proposed model demonstrates an exceptional 96.449% accuracy rate in classification.
Collapse
Affiliation(s)
- Servas Adolph Tarimo
- Department of Future Convergence Technology, Soonchunhyang University, Asan, South Korea
| | - Mi-Ae Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Emmanuel Edward Ngasa
- Department of Future Convergence Technology, Soonchunhyang University, Asan, South Korea
| | - Hee Bong Shin
- Department of Laboratory Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, South Korea.
| | - HyoJin Shin
- Department of ICT Convergence, Soonchunhyang University, Asan, South Korea
| | - Jiyoung Woo
- Department of ICT Convergence, Soonchunhyang University, Asan, South Korea.
| |
Collapse
|
5
|
Zhang J, Zhang L, Wang J, Wei X, Li J, Jiang X, Du D. SA-RPN: A Spacial Aware Region Proposal Network for Acne Detection. IEEE J Biomed Health Inform 2023; 27:5439-5448. [PMID: 37578919 DOI: 10.1109/jbhi.2023.3304727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Automated detection of skin lesions offers excellent potential for interpretative diagnosis and precise treatment of acne vulgar. However, the blurry boundary and small size of lesions make it challenging to detect acne lesions with traditional object detection methods. To better understand the acne detection task, we construct a new benchmark dataset named AcneSCU, consisting of 276 facial images with 31777 instance-level annotations from clinical dermatology. To the best of our knowledge, AcneSCU is the first acne dataset with high-resolution imageries, precise annotations, and fine-grained lesion categories, which enables the comprehensive study of acne detection. More importantly, we propose a novel method called Spatial Aware Region Proposal Network (SA-RPN) to improve the proposal quality of two-stage detection methods. Specifically, the representation learning for the classification and localization task is disentangled with a double head component to promote the proposals for hard samples. Then, Normalized Wasserstein Distance of each proposal is predicted to improve the correlation between the classification scores and the proposals' intersection-over-unions (IoUs). SA-RPN can serve as a plug-and-play module to enhance standard two-stage detectors. Extensive experiments are conducted on both AcneSCU and the public dataset ACNE04, and the results show that the proposed method can consistently outperform state-of-the-art methods.
Collapse
|
6
|
Arshad S, Amjad T, Hussain A, Qureshi I, Abbas Q. Dermo-Seg: ResNet-UNet Architecture and Hybrid Loss Function for Detection of Differential Patterns to Diagnose Pigmented Skin Lesions. Diagnostics (Basel) 2023; 13:2924. [PMID: 37761291 PMCID: PMC10527859 DOI: 10.3390/diagnostics13182924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Convolutional neural network (CNN) models have been extensively applied to skin lesions segmentation due to their information discrimination capabilities. However, CNNs' struggle to capture the connection between long-range contexts when extracting deep semantic features from lesion images, resulting in a semantic gap that causes segmentation distortion in skin lesions. Therefore, detecting the presence of differential structures such as pigment networks, globules, streaks, negative networks, and milia-like cysts becomes difficult. To resolve these issues, we have proposed an approach based on semantic-based segmentation (Dermo-Seg) to detect differential structures of lesions using a UNet model with a transfer-learning-based ResNet-50 architecture and a hybrid loss function. The Dermo-Seg model uses ResNet-50 backbone architecture as an encoder in the UNet model. We have applied a combination of focal Tversky loss and IOU loss functions to handle the dataset's highly imbalanced class ratio. The obtained results prove that the intended model performs well compared to the existing models. The dataset was acquired from various sources, such as ISIC18, ISBI17, and HAM10000, to evaluate the Dermo-Seg model. We have dealt with the data imbalance present within each class at the pixel level using our hybrid loss function. The proposed model achieves a mean IOU score of 0.53 for streaks, 0.67 for pigment networks, 0.66 for globules, 0.58 for negative networks, and 0.53 for milia-like-cysts. Overall, the Dermo-Seg model is efficient in detecting different skin lesion structures and achieved 96.4% on the IOU index. Our Dermo-Seg system improves the IOU index compared to the most recent network.
Collapse
Affiliation(s)
- Sannia Arshad
- Department of Computer Science, Faculty of Basic and Applied Science, International Islamic University, Islamabad 44000, Pakistan; (S.A.); (T.A.)
| | - Tehmina Amjad
- Department of Computer Science, Faculty of Basic and Applied Science, International Islamic University, Islamabad 44000, Pakistan; (S.A.); (T.A.)
| | - Ayyaz Hussain
- Department of Computer Science, Quaid e Azam University, Islamabad 44000, Pakistan;
| | - Imran Qureshi
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia;
| | - Qaisar Abbas
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia;
| |
Collapse
|
7
|
Lama N, Hagerty J, Nambisan A, Stanley RJ, Van Stoecker W. Skin Lesion Segmentation in Dermoscopic Images with Noisy Data. J Digit Imaging 2023; 36:1712-1722. [PMID: 37020149 PMCID: PMC10407008 DOI: 10.1007/s10278-023-00819-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/07/2023] Open
Abstract
We propose a deep learning approach to segment the skin lesion in dermoscopic images. The proposed network architecture uses a pretrained EfficientNet model in the encoder and squeeze-and-excitation residual structures in the decoder. We applied this approach on the publicly available International Skin Imaging Collaboration (ISIC) 2017 Challenge skin lesion segmentation dataset. This benchmark dataset has been widely used in previous studies. We observed many inaccurate or noisy ground truth labels. To reduce noisy data, we manually sorted all ground truth labels into three categories - good, mildly noisy, and noisy labels. Furthermore, we investigated the effect of such noisy labels in training and test sets. Our test results show that the proposed method achieved Jaccard scores of 0.807 on the official ISIC 2017 test set and 0.832 on the curated ISIC 2017 test set, exhibiting better performance than previously reported methods. Furthermore, the experimental results showed that the noisy labels in the training set did not lower the segmentation performance. However, the noisy labels in the test set adversely affected the evaluation scores. We recommend that the noisy labels should be avoided in the test set in future studies for accurate evaluation of the segmentation algorithms.
Collapse
Affiliation(s)
- Norsang Lama
- Missouri University of Science &Technology, Rolla, MO, 65409, USA
| | | | - Anand Nambisan
- Missouri University of Science &Technology, Rolla, MO, 65409, USA
| | | | | |
Collapse
|
8
|
Mirikharaji Z, Abhishek K, Bissoto A, Barata C, Avila S, Valle E, Celebi ME, Hamarneh G. A survey on deep learning for skin lesion segmentation. Med Image Anal 2023; 88:102863. [PMID: 37343323 DOI: 10.1016/j.media.2023.102863] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 02/01/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023]
Abstract
Skin cancer is a major public health problem that could benefit from computer-aided diagnosis to reduce the burden of this common disease. Skin lesion segmentation from images is an important step toward achieving this goal. However, the presence of natural and artificial artifacts (e.g., hair and air bubbles), intrinsic factors (e.g., lesion shape and contrast), and variations in image acquisition conditions make skin lesion segmentation a challenging task. Recently, various researchers have explored the applicability of deep learning models to skin lesion segmentation. In this survey, we cross-examine 177 research papers that deal with deep learning-based segmentation of skin lesions. We analyze these works along several dimensions, including input data (datasets, preprocessing, and synthetic data generation), model design (architecture, modules, and losses), and evaluation aspects (data annotation requirements and segmentation performance). We discuss these dimensions both from the viewpoint of select seminal works, and from a systematic viewpoint, examining how those choices have influenced current trends, and how their limitations should be addressed. To facilitate comparisons, we summarize all examined works in a comprehensive table as well as an interactive table available online3.
Collapse
Affiliation(s)
- Zahra Mirikharaji
- Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Burnaby V5A 1S6, Canada
| | - Kumar Abhishek
- Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Burnaby V5A 1S6, Canada
| | - Alceu Bissoto
- RECOD.ai Lab, Institute of Computing, University of Campinas, Av. Albert Einstein 1251, Campinas 13083-852, Brazil
| | - Catarina Barata
- Institute for Systems and Robotics, Instituto Superior Técnico, Avenida Rovisco Pais, Lisbon 1049-001, Portugal
| | - Sandra Avila
- RECOD.ai Lab, Institute of Computing, University of Campinas, Av. Albert Einstein 1251, Campinas 13083-852, Brazil
| | - Eduardo Valle
- RECOD.ai Lab, School of Electrical and Computing Engineering, University of Campinas, Av. Albert Einstein 400, Campinas 13083-952, Brazil
| | - M Emre Celebi
- Department of Computer Science and Engineering, University of Central Arkansas, 201 Donaghey Ave., Conway, AR 72035, USA.
| | - Ghassan Hamarneh
- Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Burnaby V5A 1S6, Canada.
| |
Collapse
|
9
|
Sun Y, Lou W, Ma W, Zhao F, Su Z. Convolution Neural Network with Coordinate Attention for Real-Time Wound Segmentation and Automatic Wound Assessment. Healthcare (Basel) 2023; 11:healthcare11091205. [PMID: 37174747 PMCID: PMC10178407 DOI: 10.3390/healthcare11091205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Wound treatment in emergency care requires the rapid assessment of wound size by medical staff. Limited medical resources and the empirical assessment of wounds can delay the treatment of patients, and manual contact measurement methods are often inaccurate and susceptible to wound infection. This study aimed to prepare an Automatic Wound Segmentation Assessment (AWSA) framework for real-time wound segmentation and automatic wound region estimation. METHODS This method comprised a short-term dense concatenate classification network (STDC-Net) as the backbone, realizing a segmentation accuracy-prediction speed trade-off. A coordinated attention mechanism was introduced to further improve the network segmentation performance. A functional relationship model between prior graphics pixels and shooting heights was constructed to achieve wound area measurement. Finally, extensive experiments on two types of wound datasets were conducted. RESULTS The experimental results showed that real-time AWSA outperformed state-of-the-art methods such as mAP, mIoU, recall, and dice score. The AUC value, which reflected the comprehensive segmentation ability, also reached the highest level of about 99.5%. The FPS values of our proposed segmentation method in the two datasets were 100.08 and 102.11, respectively, which were about 42% higher than those of the second-ranked method, reflecting better real-time performance. Moreover, real-time AWSA could automatically estimate the wound area in square centimeters with a relative error of only about 3.1%. CONCLUSION The real-time AWSA method used the STDC-Net classification network as its backbone and improved the network processing speed while accurately segmenting the wound, realizing a segmentation accuracy-prediction speed trade-off.
Collapse
Affiliation(s)
- Yi Sun
- National Key Laboratory of Electro-Mechanics Engineering and Control, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100010, China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Wenzhong Lou
- National Key Laboratory of Electro-Mechanics Engineering and Control, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100010, China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Wenlong Ma
- National Key Laboratory of Electro-Mechanics Engineering and Control, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100010, China
| | - Fei Zhao
- National Key Laboratory of Electro-Mechanics Engineering and Control, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100010, China
| | - Zilong Su
- National Key Laboratory of Electro-Mechanics Engineering and Control, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100010, China
| |
Collapse
|
10
|
Ali Z, Naz S, Zaffar H, Choi J, Kim Y. An IoMT-Based Melanoma Lesion Segmentation Using Conditional Generative Adversarial Networks. SENSORS (BASEL, SWITZERLAND) 2023; 23:3548. [PMID: 37050607 PMCID: PMC10098854 DOI: 10.3390/s23073548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/03/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Currently, Internet of medical things-based technologies provide a foundation for remote data collection and medical assistance for various diseases. Along with developments in computer vision, the application of Artificial Intelligence and Deep Learning in IOMT devices aids in the design of effective CAD systems for various diseases such as melanoma cancer even in the absence of experts. However, accurate segmentation of melanoma skin lesions from images by CAD systems is necessary to carry out an effective diagnosis. Nevertheless, the visual similarity between normal and melanoma lesions is very high, which leads to less accuracy of various traditional, parametric, and deep learning-based methods. Hence, as a solution to the challenge of accurate segmentation, we propose an advanced generative deep learning model called the Conditional Generative Adversarial Network (cGAN) for lesion segmentation. In the suggested technique, the generation of segmented images is conditional on dermoscopic images of skin lesions to generate accurate segmentation. We assessed the proposed model using three distinct datasets including DermQuest, DermIS, and ISCI2016, and attained optimal segmentation results of 99%, 97%, and 95% performance accuracy, respectively.
Collapse
Affiliation(s)
- Zeeshan Ali
- R & D Setups, National University of Computer and Emerging Sciences, Islamabad 44000, Pakistan
| | - Sheneela Naz
- Department of Computer Science, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Hira Zaffar
- Department of Computer Science, Air University, Aerospace and Aviation Kamra Campus, Islamabad 44000, Pakistan
| | - Jaeun Choi
- College of Business, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Yongsung Kim
- Department of Technology Education, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
11
|
Maguire WF, Haley PH, Dietz CM, Hoffelder M, Brandt CS, Joyce R, Fitzgerald G, Minnier C, Sander C, Ferris LK, Paragh G, Arbesman J, Wang H, Mitchell KJ, Hughes EK, Kirkwood JM. Development and Narrow Validation of Computer Vision Approach to Facilitate Assessment of Change in Pigmented Cutaneous Lesions. JID INNOVATIONS 2023; 3:100181. [PMID: 36960318 PMCID: PMC10030255 DOI: 10.1016/j.xjidi.2023.100181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 01/10/2023] Open
Abstract
The documentation of the change in the number and appearance of pigmented cutaneous lesions over time is critical to the early detection of skin cancers and may provide preliminary signals of efficacy in early-phase therapeutic prevention trials for melanoma. Despite substantial progress in computer-aided diagnosis of melanoma, automated methods to assess the evolution of lesions are relatively undeveloped. This report describes the development and narrow validation of mathematical algorithms to register nevi between sequential digital photographs of large areas of skin and to align images for improved detection and quantification of changes. Serial posterior truncal photographs from a pre-existing database were processed and analyzed by the software, and the results were evaluated by a panel of clinicians using a separate Extensible Markup Language‒based application. The software had a high sensitivity for the detection of cutaneous lesions as small as 2 mm. The software registered lesions accurately, with occasional errors at the edges of the images. In one pilot study with 17 patients, the use of the software enabled clinicians to identify new and/or enlarged lesions in 3‒11 additional patients versus the unregistered images. Automated quantification of size change performed similarly to that of human raters. These results support the further development and broader validation of this technique.
Collapse
Affiliation(s)
- William F. Maguire
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Paul H. Haley
- Computer Vision Group, Veytel, Pittsburgh, Pennsylvania, USA
| | | | - Mike Hoffelder
- Computer Vision Group, Veytel, Pittsburgh, Pennsylvania, USA
| | - Clara S. Brandt
- Computer Vision Group, Veytel, Pittsburgh, Pennsylvania, USA
- Mount Holyoke College, South Hadley, Massachusetts, USA
| | - Robin Joyce
- Computer Vision Group, Veytel, Pittsburgh, Pennsylvania, USA
- Mount Holyoke College, South Hadley, Massachusetts, USA
| | - Georgia Fitzgerald
- Computer Vision Group, Veytel, Pittsburgh, Pennsylvania, USA
- Mount Holyoke College, South Hadley, Massachusetts, USA
| | | | - Cindy Sander
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Laura K. Ferris
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gyorgy Paragh
- Department of Dermatology, Roswell Park Comprehensive Cancer Institute, Buffalo, New York, USA
| | | | - Hong Wang
- School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Ellen K. Hughes
- Computer Vision Group, Veytel, Pittsburgh, Pennsylvania, USA
| | - John M. Kirkwood
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Hasan MK, Ahamad MA, Yap CH, Yang G. A survey, review, and future trends of skin lesion segmentation and classification. Comput Biol Med 2023; 155:106624. [PMID: 36774890 DOI: 10.1016/j.compbiomed.2023.106624] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/04/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023]
Abstract
The Computer-aided Diagnosis or Detection (CAD) approach for skin lesion analysis is an emerging field of research that has the potential to alleviate the burden and cost of skin cancer screening. Researchers have recently indicated increasing interest in developing such CAD systems, with the intention of providing a user-friendly tool to dermatologists to reduce the challenges encountered or associated with manual inspection. This article aims to provide a comprehensive literature survey and review of a total of 594 publications (356 for skin lesion segmentation and 238 for skin lesion classification) published between 2011 and 2022. These articles are analyzed and summarized in a number of different ways to contribute vital information regarding the methods for the development of CAD systems. These ways include: relevant and essential definitions and theories, input data (dataset utilization, preprocessing, augmentations, and fixing imbalance problems), method configuration (techniques, architectures, module frameworks, and losses), training tactics (hyperparameter settings), and evaluation criteria. We intend to investigate a variety of performance-enhancing approaches, including ensemble and post-processing. We also discuss these dimensions to reveal their current trends based on utilization frequencies. In addition, we highlight the primary difficulties associated with evaluating skin lesion segmentation and classification systems using minimal datasets, as well as the potential solutions to these difficulties. Findings, recommendations, and trends are disclosed to inform future research on developing an automated and robust CAD system for skin lesion analysis.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Department of Bioengineering, Imperial College London, UK; Department of Electrical and Electronic Engineering (EEE), Khulna University of Engineering & Technology (KUET), Khulna 9203, Bangladesh.
| | - Md Asif Ahamad
- Department of Electrical and Electronic Engineering (EEE), Khulna University of Engineering & Technology (KUET), Khulna 9203, Bangladesh.
| | - Choon Hwai Yap
- Department of Bioengineering, Imperial College London, UK.
| | - Guang Yang
- National Heart and Lung Institute, Imperial College London, UK; Cardiovascular Research Centre, Royal Brompton Hospital, UK.
| |
Collapse
|
13
|
Mao X, Shan W, Fox W, Yu J. Subtraction technique on 18F-fluoro-2-deoxy-d-glucose positron emission tomography ( 18F-FDG-PET) images. THE IMAGING SCIENCE JOURNAL 2023. [DOI: 10.1080/13682199.2023.2169989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xuewei Mao
- Shandong Key Laboratory of Industrial Control Technology, School of Automation, Qingdao University, Qingdao, People’s Republic of China
| | - Wei Shan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
- China National Clinical Research Center for Neurological Diseases, Beijing, People’s Republic of China
- Beijing Institute for Brain Disorders, Beijing, People’s Republic of China
| | - Wilson Fox
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Jinpeng Yu
- Shandong Key Laboratory of Industrial Control Technology, School of Automation, Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
14
|
Li Y, Zhu R, Yeh M, Qu A. Dermoscopic Image Classification with Neural Style Transfer. J Comput Graph Stat 2022. [DOI: 10.1080/10618600.2022.2061496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Ruoqing Zhu
- Department of Statistics, University of Illinois at Urbana-Champaign
| | | | - Annie Qu
- Department of Statistics, University of California, Irvine
| |
Collapse
|
15
|
Santos ESD, de M S Veras R, R T Aires K, M B F Portela H, Braz Junior G, Santos JD, Tavares JMR. Semi-automatic segmentation of skin lesions based on superpixels and hybrid texture information. Med Image Anal 2022; 77:102363. [DOI: 10.1016/j.media.2022.102363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/13/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
|
16
|
Yu Z, Nguyen J, Nguyen TD, Kelly J, Mclean C, Bonnington P, Zhang L, Mar V, Ge Z. Early Melanoma Diagnosis With Sequential Dermoscopic Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:633-646. [PMID: 34648437 DOI: 10.1109/tmi.2021.3120091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dermatologists often diagnose or rule out early melanoma by evaluating the follow-up dermoscopic images of skin lesions. However, existing algorithms for early melanoma diagnosis are developed using single time-point images of lesions. Ignoring the temporal, morphological changes of lesions can lead to misdiagnosis in borderline cases. In this study, we propose a framework for automated early melanoma diagnosis using sequential dermoscopic images. To this end, we construct our method in three steps. First, we align sequential dermoscopic images of skin lesions using estimated Euclidean transformations, extract the lesion growth region by computing image differences among the consecutive images, and then propose a spatio-temporal network to capture the dermoscopic changes from aligned lesion images and the corresponding difference images. Finally, we develop an early diagnosis module to compute probability scores of malignancy for lesion images over time. We collected 179 serial dermoscopic imaging data from 122 patients to verify our method. Extensive experiments show that the proposed model outperforms other commonly used sequence models. We also compared the diagnostic results of our model with those of seven experienced dermatologists and five registrars. Our model achieved higher diagnostic accuracy than clinicians (63.69% vs. 54.33%, respectively) and provided an earlier diagnosis of melanoma (60.7% vs. 32.7% of melanoma correctly diagnosed on the first follow-up images). These results demonstrate that our model can be used to identify melanocytic lesions that are at high-risk of malignant transformation earlier in the disease process and thereby redefine what is possible in the early detection of melanoma.
Collapse
|
17
|
Afza F, Sharif M, Khan MA, Tariq U, Yong HS, Cha J. Multiclass Skin Lesion Classification Using Hybrid Deep Features Selection and Extreme Learning Machine. SENSORS (BASEL, SWITZERLAND) 2022; 22:799. [PMID: 35161553 PMCID: PMC8838278 DOI: 10.3390/s22030799] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023]
Abstract
The variation in skin textures and injuries, as well as the detection and classification of skin cancer, is a difficult task. Manually detecting skin lesions from dermoscopy images is a difficult and time-consuming process. Recent advancements in the domains of the internet of things (IoT) and artificial intelligence for medical applications demonstrated improvements in both accuracy and computational time. In this paper, a new method for multiclass skin lesion classification using best deep learning feature fusion and an extreme learning machine is proposed. The proposed method includes five primary steps: image acquisition and contrast enhancement; deep learning feature extraction using transfer learning; best feature selection using hybrid whale optimization and entropy-mutual information (EMI) approach; fusion of selected features using a modified canonical correlation based approach; and, finally, extreme learning machine based classification. The feature selection step improves the system's computational efficiency and accuracy. The experiment is carried out on two publicly available datasets, HAM10000 and ISIC2018. The achieved accuracy on both datasets is 93.40 and 94.36 percent. When compared to state-of-the-art (SOTA) techniques, the proposed method's accuracy is improved. Furthermore, the proposed method is computationally efficient.
Collapse
Affiliation(s)
- Farhat Afza
- Department of Computer Science, Wah Campus, COMSATS University Islamabad, Wah Cantt 47040, Pakistan;
| | - Muhammad Sharif
- Department of Computer Science, Wah Campus, COMSATS University Islamabad, Wah Cantt 47040, Pakistan;
| | | | - Usman Tariq
- College of Computer Engineering and Science, Prince Sattam Bin Abdulaziz University, Al-Kharaj 11942, Saudi Arabia;
| | - Hwan-Seung Yong
- Department of Computer Science & Engineering, Ewha Womans University, Seoul 03760, Korea;
| | - Jaehyuk Cha
- Department of Computer Science, Hanyang University, Seoul 04763, Korea;
| |
Collapse
|
18
|
Zhao M, Kawahara J, Abhishek K, Shamanian S, Hamarneh G. Skin3D: Detection and Longitudinal Tracking of Pigmented Skin Lesions in 3D Total-Body Textured Meshes. Med Image Anal 2021; 77:102329. [DOI: 10.1016/j.media.2021.102329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/27/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
|
19
|
Khan MA, Muhammad K, Sharif M, Akram T, Albuquerque VHCD. Multi-Class Skin Lesion Detection and Classification via Teledermatology. IEEE J Biomed Health Inform 2021; 25:4267-4275. [PMID: 33750716 DOI: 10.1109/jbhi.2021.3067789] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Teledermatology is one of the most illustrious applications of telemedicine and e-health. In this field, telecommunication technologies are utilized to transfer medical information to the experts. Due to the skin's visual nature, teledermatology is an effective tool for the diagnosis of skin lesions especially in rural areas. Furthermore, it can also be useful to limit gratuitous clinical referrals and triage dermatology cases. The objective of this research is to classify the skin lesion image samples, received from different servers. The proposed framework is comprised of two module, which include the skin lesion localization/segmentation and the classification. In the localization module, we propose a hybrid strategy that fuses the binary images generated from the designed 16-layered convolutional neural network model and an improved high dimension contrast transform (HDCT) based saliency segmentation. To utilize maximum information extracted from the binary images, a maximal mutual information method is proposed, which returns the segmented RGB lesion image. In the classification module, a pre-trained DenseNet201 model is re-trained on the segmented lesion images using transfer learning. Afterward, the extracted features from the two fully connected layers are down-sampled using the t-distribution stochastic neighbor embedding (t-SNE) method. These resultant features are finally fused using a multi canonical correlation (MCCA) approach and are passed to a multi-class ELM classifier. Four datasets (i.e., ISBI2016, ISIC2017, PH2, and ISBI2018) are employed for the evaluation of the segmentation task, while HAM10000, the most challenging dataset, is used for the classification task. The experimental results in comparison with the state-of-the-art methods affirm the strength of our proposed framework.
Collapse
|
20
|
Pereira PMM, Thomaz LA, Tavora LMN, Assuncao PAA, Fonseca-Pinto RM, Paiva RP, Faria SMMD. Melanoma classification using light-Fields with morlet scattering transform and CNN: Surface depth as a valuable tool to increase detection rate. Med Image Anal 2021; 75:102254. [PMID: 34649195 DOI: 10.1016/j.media.2021.102254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/27/2021] [Accepted: 09/22/2021] [Indexed: 11/15/2022]
Abstract
Medical image classification through learning-based approaches has been increasingly used, namely in the discrimination of melanoma. However, for skin lesion classification in general, such methods commonly rely on dermoscopic or other 2D-macro RGB images. This work proposes to exploit beyond conventional 2D image characteristics, by considering a third dimension (depth) that characterises the skin surface rugosity, which can be obtained from light-field images, such as those available in the SKINL2 dataset. To achieve this goal, a processing pipeline was deployed using a morlet scattering transform and a CNN model, allowing to perform a comparison between using 2D information, only 3D information, or both. Results show that discrimination between Melanoma and Nevus reaches an accuracy of 84.00, 74.00 or 94.00% when using only 2D, only 3D, or both, respectively. An increase of 14.29pp in sensitivity and 8.33pp in specificity is achieved when expanding beyond conventional 2D information by also using depth. When discriminating between Melanoma and all other types of lesions (a further imbalanced setting), an increase of 28.57pp in sensitivity and decrease of 1.19pp in specificity is achieved for the same test conditions. Overall the results of this work demonstrate significant improvements over conventional approaches.
Collapse
Affiliation(s)
- Pedro M M Pereira
- Instituto de Telecomunicações, Morro do Lena - Alto do Vieiro, Leiria 2411-901, Portugal; University of Coimbra, Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, Pinhal de Marrocos, Coimbra 3030-290, Portugal.
| | - Lucas A Thomaz
- Instituto de Telecomunicações, Morro do Lena - Alto do Vieiro, Leiria 2411-901, Portugal; ESTG, Polytechnic of Leiria, Morro do Lena - Alto do Vieiro, Leiria 2411-901, Portugal
| | - Luis M N Tavora
- ESTG, Polytechnic of Leiria, Morro do Lena - Alto do Vieiro, Leiria 2411-901, Portugal
| | - Pedro A A Assuncao
- Instituto de Telecomunicações, Morro do Lena - Alto do Vieiro, Leiria 2411-901, Portugal; ESTG, Polytechnic of Leiria, Morro do Lena - Alto do Vieiro, Leiria 2411-901, Portugal
| | - Rui M Fonseca-Pinto
- Instituto de Telecomunicações, Morro do Lena - Alto do Vieiro, Leiria 2411-901, Portugal; ESTG, Polytechnic of Leiria, Morro do Lena - Alto do Vieiro, Leiria 2411-901, Portugal
| | - Rui Pedro Paiva
- University of Coimbra, Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, Pinhal de Marrocos, Coimbra 3030-290, Portugal
| | - Sergio M M de Faria
- Instituto de Telecomunicações, Morro do Lena - Alto do Vieiro, Leiria 2411-901, Portugal; ESTG, Polytechnic of Leiria, Morro do Lena - Alto do Vieiro, Leiria 2411-901, Portugal
| |
Collapse
|
21
|
Kassem MA, Hosny KM, Damaševičius R, Eltoukhy MM. Machine Learning and Deep Learning Methods for Skin Lesion Classification and Diagnosis: A Systematic Review. Diagnostics (Basel) 2021; 11:1390. [PMID: 34441324 PMCID: PMC8391467 DOI: 10.3390/diagnostics11081390] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/04/2022] Open
Abstract
Computer-aided systems for skin lesion diagnosis is a growing area of research. Recently, researchers have shown an increasing interest in developing computer-aided diagnosis systems. This paper aims to review, synthesize and evaluate the quality of evidence for the diagnostic accuracy of computer-aided systems. This study discusses the papers published in the last five years in ScienceDirect, IEEE, and SpringerLink databases. It includes 53 articles using traditional machine learning methods and 49 articles using deep learning methods. The studies are compared based on their contributions, the methods used and the achieved results. The work identified the main challenges of evaluating skin lesion segmentation and classification methods such as small datasets, ad hoc image selection and racial bias.
Collapse
Affiliation(s)
- Mohamed A. Kassem
- Department of Robotics and Intelligent Machines, Faculty of Artificial Intelligence, Kaferelshiekh University, Kaferelshiekh 33511, Egypt;
| | - Khalid M. Hosny
- Department of Information Technology, Faculty of Computers and Informatics, Zagazig University, Zagazig 44519, Egypt
| | - Robertas Damaševičius
- Department of Applied Informatics, Vytautas Magnus University, 44404 Kaunas, Lithuania
| | - Mohamed Meselhy Eltoukhy
- Computer Science Department, Faculty of Computers and Informatics, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
22
|
Hasan MK, Roy S, Mondal C, Alam MA, E Elahi MT, Dutta A, Uddin Raju ST, Jawad MT, Ahmad M. Dermo-DOCTOR: A framework for concurrent skin lesion detection and recognition using a deep convolutional neural network with end-to-end dual encoders. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
23
|
Zhang B, Wang Z, Gao J, Rutjes C, Nufer K, Tao D, Feng DD, Menzies SW. Short-Term Lesion Change Detection for Melanoma Screening With Novel Siamese Neural Network. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:840-851. [PMID: 33180721 DOI: 10.1109/tmi.2020.3037761] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Short-term monitoring of lesion changes has been a widely accepted clinical guideline for melanoma screening. When there is a significant change of a melanocytic lesion at three months, the lesion will be excised to exclude melanoma. However, the decision on change or no-change heavily depends on the experience and bias of individual clinicians, which is subjective. For the first time, a novel deep learning based method is developed in this paper for automatically detecting short-term lesion changes in melanoma screening. The lesion change detection is formulated as a task measuring the similarity between two dermoscopy images taken for a lesion in a short time-frame, and a novel Siamese structure based deep network is proposed to produce the decision: changed (i.e. not similar) or unchanged (i.e. similar enough). Under the Siamese framework, a novel structure, namely Tensorial Regression Process, is proposed to extract the global features of lesion images, in addition to deep convolutional features. In order to mimic the decision-making process of clinicians who often focus more on regions with specific patterns when comparing a pair of lesion images, a segmentation loss (SegLoss) is further devised and incorporated into the proposed network as a regularization term. To evaluate the proposed method, an in-house dataset with 1,000 pairs of lesion images taken in a short time-frame at a clinical melanoma centre was established. Experimental results on this first-of-a-kind large dataset indicate that the proposed model is promising in detecting the short-term lesion change for objective melanoma screening.
Collapse
|
24
|
Zhang Y, Ali K, George JA, Reichenberg JS, Fox MC, Adamson AS, Tunnell JW, Markey MK. Toward automated assessment of mole similarity on dermoscopic images. J Med Imaging (Bellingham) 2021; 8:014506. [PMID: 33585663 DOI: 10.1117/1.jmi.8.1.014506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 01/04/2021] [Indexed: 11/14/2022] Open
Abstract
Purpose: Current skin cancer detection relies on dermatologists' visual assessments of moles directly or dermoscopically. Our goal is to show that our similarity assessment algorithm on dermoscopic images can perform as well as a dermatologist's assessment. Approach: Given one target mole and two other moles from the same patient, our model determines which mole is more similar to the target mole. Similarity was quantified as the Euclidean distance in a feature space designed to capture mole properties such as size, shape, and color. We tested our model on 18 patients, each of whom had at least five moles, and compared the model assessments of mole similarity with that of three dermatologists. Fleiss' Kappa agreement coefficients and iteration tests were used to evaluate the agreement in similarity assessment among dermatologists and our model. Results: With the selected features of size, entropy (color variation), and cluster prominence (asymmetry), our algorithm's similarity assessments agreed moderately with the similarity assessments of dermatologists. The mean Kappa of 1000 iteration tests was 0.49 ( confidence interval ( CI ) = [ 0.23 , 0.74 ] ) when comparing three dermatologists and our model, which is comparable to the agreement in similarity assessment among the dermatologists themselves (the mean Kappa of 1000 iteration tests for three dermatologists was 0.48, CI = [ 0.19 , 0.77 ] .) By contrast, the mean Kappa was 0.22 ( CI = [ - 0.00 , 0.43 ] ) when comparing the similarity assessments of three dermatologists and random guesses. Conclusions: Our study showed that our image feature-engineering-based algorithm can effectively assess the similarity of moles as dermatologists do. Such a similarity assessment could serve as the foundation for computer-assisted intra-patient evaluation of moles.
Collapse
Affiliation(s)
- Yao Zhang
- The University of Texas at Austin, Department of Biomedical Engineering, Austin, United States
| | - Kamil Ali
- The University of Texas at Austin, Department of Computer Science, Austin, United States
| | - Jacob A George
- University of Utah, Physical Medicine and Rehabilitation, Salt Lake City, United States
| | - Jason S Reichenberg
- The University of Texas at Austin, Department of Medicine, Austin, United States
| | - Matthew C Fox
- The University of Texas at Austin, Department of Medicine, Austin, United States
| | - Adewole S Adamson
- The University of Texas at Austin, Department of Medicine, Austin, United States
| | - James W Tunnell
- The University of Texas at Austin, Department of Biomedical Engineering, Austin, United States
| | - Mia K Markey
- The University of Texas at Austin, Department of Biomedical Engineering, Austin, United States.,The University of Texas MD Anderson Cancer Center, Department of Imaging Physics, Houston, United States
| |
Collapse
|
25
|
Jin Q, Cui H, Sun C, Meng Z, Su R. Cascade knowledge diffusion network for skin lesion diagnosis and segmentation. Appl Soft Comput 2021. [DOI: 10.1016/j.asoc.2020.106881] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Chino DYT, Scabora LC, Cazzolato MT, Jorge AES, Traina-Jr C, Traina AJM. Segmenting skin ulcers and measuring the wound area using deep convolutional networks. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 191:105376. [PMID: 32066047 DOI: 10.1016/j.cmpb.2020.105376] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/17/2020] [Accepted: 01/29/2020] [Indexed: 05/17/2023]
Abstract
BACKGROUND AND OBJECTIVES Bedridden patients presenting chronic skin ulcers often need to be examined at home. Healthcare professionals follow the evolution of the patients' condition by regularly taking pictures of the wounds, as different aspects of the wound can indicate the healing stages of the ulcer, including depth, location, and size. The manual measurement of the wounds' size is often inaccurate, time-consuming, and can also cause discomfort to the patient. In this work, we propose the Automatic Skin Ulcer Region Assessment ASURA framework to accurately segment the wound and automatically measure its size. METHODS ASURA uses an encoder/decoder deep neural network to perform the segmentation, which detects the measurement ruler/tape present in the image and estimates its pixel density. RESULTS Experimental results show that ASURA outperforms the state-of-the-art methods by up to 16% regarding the Dice score, being able to correctly segment the wound with a Dice score higher than 90%. ASURA automatically estimates the pixel density of the images with a relative error of 5%. When using a semi-automatic approach, ASURA was able to estimate the area of the wound in square centimeters with a relative error of 14%. CONCLUSIONS The results show that ASURA is well-suited for the problem of segmenting and automatically measuring skin ulcers.
Collapse
Affiliation(s)
- Daniel Y T Chino
- Institute of Mathematical and Computer Sciences, University of Sao Paulo, Brazil.
| | - Lucas C Scabora
- Institute of Mathematical and Computer Sciences, University of Sao Paulo, Brazil.
| | - Mirela T Cazzolato
- Institute of Mathematical and Computer Sciences, University of Sao Paulo, Brazil.
| | - Ana E S Jorge
- Department of Physical Therapy, Federal University of Sao Carlos, Brazil.
| | - Caetano Traina-Jr
- Institute of Mathematical and Computer Sciences, University of Sao Paulo, Brazil.
| | - Agma J M Traina
- Institute of Mathematical and Computer Sciences, University of Sao Paulo, Brazil.
| |
Collapse
|
27
|
Artificial Intelligence in Dermatology: A Primer. J Invest Dermatol 2020; 140:1504-1512. [PMID: 32229141 DOI: 10.1016/j.jid.2020.02.026] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 01/17/2023]
Abstract
Artificial intelligence is becoming increasingly important in dermatology, with studies reporting accuracy matching or exceeding dermatologists for the diagnosis of skin lesions from clinical and dermoscopic images. However, real-world clinical validation is currently lacking. We review dermatological applications of deep learning, the leading artificial intelligence technology for image analysis, and discuss its current capabilities, potential failure modes, and challenges surrounding performance assessment and interpretability. We address the following three primary applications: (i) teledermatology, including triage for referral to dermatologists; (ii) augmenting clinical assessment during face-to-face visits; and (iii) dermatopathology. We discuss equity and ethical issues related to future clinical adoption and recommend specific standardization of metrics for reporting model performance.
Collapse
|
28
|
Chatterjee S, Dey D, Munshi S. Integration of morphological preprocessing and fractal based feature extraction with recursive feature elimination for skin lesion types classification. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 178:201-218. [PMID: 31416550 DOI: 10.1016/j.cmpb.2019.06.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/03/2019] [Accepted: 06/15/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND OBJECTIVE Skin cancer is the commonest form of cancer in the worldwide population. Non-invasive and non-contact imaging modalities are being used for the screening of melanoma and other cutaneous malignancies to endorse early detection and prevention of the disease. Traditionally it has been a problem for medical personnel to differentiate melanoma, dysplastic nevi and basal cell carcinoma (BCC) diseases from one another due to the confusing appearance and similarity in the characteristics of the pigmented lesions. The paper reports an integrated method developed for identifying these skin diseases from the dermoscopic images. METHODS The proposed integrated computer-aided method has been employed for the identification of each of these diseases using recursive feature elimination (RFE) based layered structured multiclass image classification technique. Prior to the classification, different quantitative features have been extracted by analyzing the shape, the border irregularity, the texture and the color of the skin lesions, using different image processing tools. Primarily, a combination of gray level co-occurrence matrix (GLCM) and a proposed fractal-based regional texture analysis (FRTA) algorithm has been used for the quantification of textural information. The performance of the framework has been evaluated using a layered structure classification model using support vector machine (SVM) classifier with radial basis function (RBF). RESULTS The performance of the morphological skin lesion segmentation algorithm has been evaluated by estimating the pixel level sensitivity (Sen) of 0.9172, 0.9788 specificity (Spec), 0.9521 accuracy (ACU), along with the image similarity measuring indices as Jaccard similarity index (JSI) of 0.8562 and Dice similarity coefficient (DSC) of 0.9142 with respect to the corresponding ground truth (GT) images. The quantitative features extracted from the proposed feature extraction algorithms have been employed for the proposed multi-class skin disease identification. The proposed layered structure identifies all the three classes of skin diseases with a highly acceptable classification accuracy of 98.99%, 97.54% and 99.65% for melanoma, dysplastic nevi and BCC respectively. CONCLUSION To overcome the difficulties of proper diagnosis of diseases based on visual evaluation, the proposed integrated system plays an important role by quantifying the effective features and identifying the diseases with higher degree of accuracy. This combined approach of quantitative and qualitative analysis not only increases the diagnostic accuracy, but also provides some important information not obtainable from qualitative assessment alone.
Collapse
Affiliation(s)
| | - Debangshu Dey
- Electrical Engineering Department, Jadavpur University, Kolkata-700032, India
| | - Sugata Munshi
- Electrical Engineering Department, Jadavpur University, Kolkata-700032, India
| |
Collapse
|
29
|
Saba T, Khan MA, Rehman A, Marie-Sainte SL. Region Extraction and Classification of Skin Cancer: A Heterogeneous framework of Deep CNN Features Fusion and Reduction. J Med Syst 2019; 43:289. [PMID: 31327058 DOI: 10.1007/s10916-019-1413-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/03/2019] [Indexed: 01/12/2023]
Abstract
Cancer is one of the leading causes of deaths in the last two decades. It is either diagnosed malignant or benign - depending upon the severity of the infection and the current stage. The conventional methods require a detailed physical inspection by an expert dermatologist, which is time-consuming and imprecise. Therefore, several computer vision methods are introduced lately, which are cost-effective and somewhat accurate. In this work, we propose a new automated approach for skin lesion detection and recognition using a deep convolutional neural network (DCNN). The proposed cascaded design incorporates three fundamental steps including; a) contrast enhancement through fast local Laplacian filtering (FlLpF) along HSV color transformation; b) lesion boundary extraction using color CNN approach by following XOR operation; c) in-depth features extraction by applying transfer learning using Inception V3 model prior to feature fusion using hamming distance (HD) approach. An entropy controlled feature selection method is also introduced for the selection of the most discriminant features. The proposed method is tested on PH2 and ISIC 2017 datasets, whereas the recognition phase is validated on PH2, ISBI 2016, and ISBI 2017 datasets. From the results, it is concluded that the proposed method outperforms several existing methods and attained accuracy 98.4% on PH2 dataset, 95.1% on ISBI dataset and 94.8% on ISBI 2017 dataset.
Collapse
Affiliation(s)
- Tanzila Saba
- College of Computer and Information Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| | - Muhammad Attique Khan
- Department of Computer Science and Engineering, HITEC Universit, Museum Road, Taxila, Pakistan
| | - Amjad Rehman
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia.
| | | |
Collapse
|
30
|
|
31
|
Roja Ramani D, Ranjani SS. An Efficient Melanoma Diagnosis Approach Using Integrated HMF Multi-Atlas Map Based Segmentation. J Med Syst 2019; 43:225. [PMID: 31190229 DOI: 10.1007/s10916-019-1315-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 04/25/2019] [Indexed: 10/26/2022]
Abstract
Melanoma is a life threading disease when it grows outside the corium layer of the skin. Mortality rates of the Melanoma cases are maximum among the skin cancer patients. The cost required for the treatment of advanced melanoma cases is very high and the survival rate is low. Numerous computerized dermoscopy systems are developed based on the combination of shape, texture and color features to facilitate early diagnosis of melanoma. The availability and cost of the dermoscopic imaging system is still an issue. To mitigate this issue, this paper presented an integrated segmentation and Third Dimensional (3D) feature extraction approach for the accurate diagnosis of melanoma. A multi-atlas method is applied for the image segmentation. The patch-based label fusion model is expressed in a Bayesian framework to improve the segmentation accuracy. A depth map is obtained from the Two-dimensional (2D) dermoscopic image for reconstructing the 3D skin lesion represented as structure tensors. The 3D shape features including the relative depth features are obtained. Streaks are the significant morphological terms of the melanoma in the radial growth phase. The proposed method yields maximum segmentation accuracy, sensibility, specificity and minimum cost function than the existing segmentation technique and classifier.
Collapse
Affiliation(s)
- D Roja Ramani
- Department of Information Technology, Sethu Institute of Technology, Virudhunagar, India.
| | - S Siva Ranjani
- Department of Computer Science and Engineering, Sethu Institute of Technology, Virudhunagar, India
| |
Collapse
|