1
|
Jin Z, Gong J, Deng M, Zheng P, Li G. Deep Learning-Based Diagnosis Algorithm for Alzheimer's Disease. J Imaging 2024; 10:333. [PMID: 39728230 PMCID: PMC11728444 DOI: 10.3390/jimaging10120333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Alzheimer's disease (AD), a degenerative condition affecting the central nervous system, has witnessed a notable rise in prevalence along with the increasing aging population. In recent years, the integration of cutting-edge medical imaging technologies with forefront theories in artificial intelligence has dramatically enhanced the efficiency of identifying and diagnosing brain diseases such as AD. This paper presents an innovative two-stage automatic auxiliary diagnosis algorithm for AD, based on an improved 3D DenseNet segmentation model and an improved MobileNetV3 classification model applied to brain MR images. In the segmentation network, the backbone network was simplified, the activation function and loss function were replaced, and the 3D GAM attention mechanism was introduced. In the classification network, firstly, the CA attention mechanism was added to enhance the model's ability to capture positional information of disease features; secondly, dilated convolutions were introduced to extract richer features from the input feature maps; and finally, the fully connected layer of MobileNetV3 was modified and the idea of transfer learning was adopted to improve the model's feature extraction capability. The results of the study showed that the proposed approach achieved classification accuracies of 97.85% for AD/NC, 95.31% for MCI/NC, 93.96% for AD/MCI, and 92.63% for AD/MCI/NC, respectively, which were 3.1, 2.8, 2.6, and 2.8 percentage points higher than before the improvement. Comparative and ablation experiments have validated the proposed classification performance of this method, demonstrating its capability to facilitate an accurate and efficient automated auxiliary diagnosis of AD, offering a deep learning-based solution for it.
Collapse
Affiliation(s)
| | | | - Minghui Deng
- College of Electrical and Information, Northeast Agricultural University, 600 Changjiang Road, Harbin 150038, China; (Z.J.); (J.G.); (P.Z.); (G.L.)
| | | | | |
Collapse
|
2
|
Kaur A, Mittal M, Bhatti JS, Thareja S, Singh S. A systematic literature review on the significance of deep learning and machine learning in predicting Alzheimer's disease. Artif Intell Med 2024; 154:102928. [PMID: 39029377 DOI: 10.1016/j.artmed.2024.102928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 04/15/2024] [Accepted: 06/27/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent cause of dementia, characterized by a steady decline in mental, behavioral, and social abilities and impairs a person's capacity for independent functioning. It is a fatal neurodegenerative disease primarily affecting older adults. OBJECTIVES The purpose of this literature review is to investigate various AD detection techniques, datasets, input modalities, algorithms, libraries, and performance evaluation metrics used to determine which model or strategy may provide superior performance. METHOD The initial search yielded 807 papers, but only 100 research articles were chosen after applying the inclusion-exclusion criteria. This SLR analyzed research items published between January 2019 and December 2022. The ACM, Elsevier, IEEE Xplore Digital Library, PubMed, Springer and Taylor & Francis were systematically searched. The current study considers articles that used Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), APOe4 genotype, Diffusion Tensor Imaging (DTI) and Cerebrospinal Fluid (CSF) biomarkers. The study was performed following Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. CONCLUSION According to the literature survey, most studies (n = 76) used the DL strategy. The datasets used by studies were primarily derived from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The majority of studies (n = 73) used single-modality neuroimaging data, while the remaining used multi-modal input data. In a multi-modality approach, the combination of MRI and PET scans is commonly preferred. Also, Regarding the algorithm used, Convolution Neural Network (CNN) showed the highest accuracy, 100 %, in classifying AD vs. CN subjects whereas the SVM was the most common ML algorithm, with a maximum accuracy of 99.82 %.
Collapse
Affiliation(s)
- Arshdeep Kaur
- Dept. of Computer Science & Technology, Central University of Punjab, Bathinda, India
| | - Meenakshi Mittal
- Dept. of Computer Science & Technology, Central University of Punjab, Bathinda, India
| | - Jasvinder Singh Bhatti
- Dept. of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Suresh Thareja
- Dept. of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Satwinder Singh
- Dept. of Computer Science & Technology, Central University of Punjab, Bathinda, India.
| |
Collapse
|
3
|
Duan H, Wang H, Chen Y, Liu F, Tao L. EAMNet: an Alzheimer's disease prediction model based on representation learning. Phys Med Biol 2023; 68:215005. [PMID: 37774713 DOI: 10.1088/1361-6560/acfec8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/29/2023] [Indexed: 10/01/2023]
Abstract
Objective. Brain18F-FDG PET images indicate brain lesions' metabolic status and offer the predictive potential for Alzheimer's disease (AD). However, the complexity of extracting relevant lesion features and dealing with extraneous information in PET images poses challenges for accurate prediction.Approach. To address these issues, we propose an innovative solution called the efficient adaptive multiscale network (EAMNet) for predicting potential patient populations using positron emission tomography (PET) image slices, enabling effective intervention and treatment. Firstly, we introduce an efficient convolutional strategy to enhance the receptive field of PET images during the feature learning process, avoiding excessive extraction of fine tissue features by deep-level networks while reducing the model's computational complexity. Secondly, we construct a channel attention module that enables the prediction model to adaptively allocate weights between different channels, compensating for the spatial noise in PET images' impact on classification. Finally, we use skip connections to merge features from different-scale lesion information. Through visual analysis, the network constructed in this article aligns with the regions of interest of clinical doctors.Main results. Through visualization analysis, our network aligns with regions of interest identified by clinical doctors. Experimental evaluations conducted on the ADNI (Alzheimer's Disease Neuroimaging Initiative) dataset demonstrate the outstanding classification performance of our proposed method. The accuracy rates for AD versus NC (Normal Controls), AD versus MCI (Mild Cognitive Impairment), MCI versus NC, and AD versus MCI versus NC classifications achieve 97.66%, 96.32%, 95.23%, and 95.68%, respectively.Significance. The proposed method surpasses advanced algorithms in the field, providing a hopeful advancement in accurately predicting and classifying Alzheimer's Disease using18F-FDG PET images. The source code has been uploaded tohttps://github.com/Haoliang-D-AHU/EAMNet/tree/master.
Collapse
Affiliation(s)
- Haoliang Duan
- Anhui Provincial International Joint Research Center for Advanced Technology in Medical Imaging, Anhui University, Hefei, People's Republic of China
- School of Computer Science and Technology, Anhui University, Hefei, People's Republic of China
| | - Huabin Wang
- Anhui Provincial International Joint Research Center for Advanced Technology in Medical Imaging, Anhui University, Hefei, People's Republic of China
- School of Computer Science and Technology, Anhui University, Hefei, People's Republic of China
| | - Yonglin Chen
- Anhui Provincial International Joint Research Center for Advanced Technology in Medical Imaging, Anhui University, Hefei, People's Republic of China
- School of Computer Science and Technology, Anhui University, Hefei, People's Republic of China
| | - Fei Liu
- Anhui Provincial International Joint Research Center for Advanced Technology in Medical Imaging, Anhui University, Hefei, People's Republic of China
- School of Computer Science and Technology, Anhui University, Hefei, People's Republic of China
| | - Liang Tao
- Anhui Provincial International Joint Research Center for Advanced Technology in Medical Imaging, Anhui University, Hefei, People's Republic of China
- School of Computer Science and Technology, Anhui University, Hefei, People's Republic of China
| |
Collapse
|
4
|
Saleh H, Amer E, Abuhmed T, Ali A, Al-Fuqaha A, El-Sappagh S. Computer aided progression detection model based on optimized deep LSTM ensemble model and the fusion of multivariate time series data. Sci Rep 2023; 13:16336. [PMID: 37770490 PMCID: PMC10539296 DOI: 10.1038/s41598-023-42796-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Early and accurate detection of AD is crucial to plan for disease modifying therapies that could prevent or delay the conversion to sever stages of the disease. As a chronic disease, patient's multivariate time series data including neuroimaging, genetics, cognitive scores, and neuropsychological battery provides a complete profile about patient's status. This data has been used to build machine learning and deep learning (DL) models for the early detection of the disease. However, these models still have limited performance and are not stable enough to be trusted in real medical settings. Literature shows that DL models outperform classical machine learning models, but ensemble learning has proven to achieve better results than standalone models. This study proposes a novel deep stacking framework which combines multiple DL models to accurately predict AD at an early stage. The study uses long short-term memory (LSTM) models as base models over patient's multivariate time series data to learn the deep longitudinal features. Each base LSTM classifier has been optimized using the Bayesian optimizer using different feature sets. As a result, the final optimized ensembled model employed heterogeneous base models that are trained on heterogeneous data. The performance of the resulting ensemble model has been explored using a cohort of 685 patients from the University of Washington's National Alzheimer's Coordinating Center dataset. Compared to the classical machine learning models and base LSTM classifiers, the proposed ensemble model achieves the highest testing results (i.e., 82.02, 82.25, 82.02, and 82.12 for accuracy, precision, recall, and F1-score, respectively). The resulting model enhances the performance of the state-of-the-art literature, and it could be used to build an accurate clinical decision support tool that can assist domain experts for AD progression detection.
Collapse
Affiliation(s)
- Hager Saleh
- Faculty of Computers and Artificial Intelligence, South Valley University, Hurghada, Egypt
| | - Eslam Amer
- Communications and Information Technology, The Institute of Electronics, Queen's University of Belfast, Belfast, UK
| | - Tamer Abuhmed
- Information Laboratory (InfoLab), College of Computing and Informatics, Sungkyunkwan University, Seoul, Suwon, 16419, South Korea.
| | - Amjad Ali
- Information and Computing Technology (ICT) Division, College of Science and Engineering (CSE), Hamad Bin Khalifa University, Doha, Qatar
| | - Ala Al-Fuqaha
- Information and Computing Technology (ICT) Division, College of Science and Engineering (CSE), Hamad Bin Khalifa University, Doha, Qatar
| | - Shaker El-Sappagh
- Information Laboratory (InfoLab), College of Computing and Informatics, Sungkyunkwan University, Seoul, Suwon, 16419, South Korea.
- Faculty of Computer Science and Engineering, Galala University, Suez, 435611, Egypt.
- Faculty of Computers and Artificial Intelligence, Benha University, Banha, 13518, Egypt.
| |
Collapse
|
5
|
Ahmadzadeh M, Christie GJ, Cosco TD, Arab A, Mansouri M, Wagner KR, DiPaola S, Moreno S. Neuroimaging and machine learning for studying the pathways from mild cognitive impairment to alzheimer's disease: a systematic review. BMC Neurol 2023; 23:309. [PMID: 37608251 PMCID: PMC10463866 DOI: 10.1186/s12883-023-03323-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 07/08/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND This systematic review synthesizes the most recent neuroimaging procedures and machine learning approaches for the prediction of conversion from mild cognitive impairment to Alzheimer's disease dementia. METHODS We systematically searched PubMed, SCOPUS, and Web of Science databases following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) systematic review guidelines. RESULTS Our search returned 2572 articles, 56 of which met the criteria for inclusion in the final selection. The multimodality framework and deep learning techniques showed potential for predicting the conversion of MCI to AD dementia. CONCLUSION Findings of this systematic review identified that the possibility of using neuroimaging data processed by advanced learning algorithms is promising for the prediction of AD progression. We also provided a detailed description of the challenges that researchers are faced along with future research directions. The protocol has been registered in the International Prospective Register of Systematic Reviews- CRD42019133402 and published in the Systematic Reviews journal.
Collapse
Affiliation(s)
- Maryam Ahmadzadeh
- School of Interactive Arts and Technology, Simon Fraser University, 250 - 13450 102 Ave, Surrey, BC, Canada
| | - Gregory J Christie
- School of Interactive Arts and Technology, Simon Fraser University, 250 - 13450 102 Ave, Surrey, BC, Canada
| | - Theodore D Cosco
- Gerontology Research Center, Simon Fraser University, Vancouver, BC, Canada
- Oxford Institute of Population Ageing, University of Oxford, Oxford, UK
| | - Ali Arab
- Department of Computing Science, Simon Fraser University, Burnaby, BC, Canada
| | - Mehrdad Mansouri
- Department of Computing Science, Simon Fraser University, Burnaby, BC, Canada
| | - Kevin R Wagner
- Gerontology Research Center, Simon Fraser University, Vancouver, BC, Canada
| | - Steve DiPaola
- School of Interactive Arts and Technology, Simon Fraser University, 250 - 13450 102 Ave, Surrey, BC, Canada.
| | - Sylvain Moreno
- School of Interactive Arts and Technology, Simon Fraser University, 250 - 13450 102 Ave, Surrey, BC, Canada
| |
Collapse
|
6
|
Duan J, Liu Y, Wu H, Wang J, Chen L, Chen CLP. Broad learning for early diagnosis of Alzheimer's disease using FDG-PET of the brain. Front Neurosci 2023; 17:1137567. [PMID: 36992851 PMCID: PMC10040750 DOI: 10.3389/fnins.2023.1137567] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, and the development of AD is irreversible. However, preventive measures in the presymptomatic stage of AD can effectively slow down deterioration. Fluorodeoxyglucose positron emission tomography (FDG-PET) can detect the metabolism of glucose in patients' brains, which can help to identify changes related to AD before brain damage occurs. Machine learning is useful for early diagnosis of patients with AD using FDG-PET, but it requires a sufficiently large dataset, and it is easy for overfitting to occur in small datasets. Previous studies using machine learning for early diagnosis with FDG-PET have either involved the extraction of elaborately handcrafted features or validation on a small dataset, and few studies have explored the refined classification of early mild cognitive impairment (EMCI) and late mild cognitive impairment (LMCI). This article presents a broad network-based model for early diagnosis of AD (BLADNet) through PET imaging of the brain; this method employs a novel broad neural network to enhance the features of FDG-PET extracted via 2D CNN. BLADNet can search for information over a broad space through the addition of new BLS blocks without retraining of the whole network, thus improving the accuracy of AD classification. Experiments conducted on a dataset containing 2,298 FDG-PET images of 1,045 subjects from the ADNI database demonstrate that our methods are superior to those used in previous studies on early diagnosis of AD with FDG-PET. In particular, our methods achieved state-of-the-art results in EMCI and LMCI classification with FDG-PET.
Collapse
Affiliation(s)
- Junwei Duan
- College of Information Science and Technology, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, China
- *Correspondence: Junwei Duan
| | - Yang Liu
- College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Huanhua Wu
- Department of Nuclear Medicine and PET/CT-MRI Centre, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jing Wang
- School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, China
- Jing Wang
| | - Long Chen
- Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China
| | - C. L. Philip Chen
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
7
|
El-Sappagh S, Alonso-Moral JM, Abuhmed T, Ali F, Bugarín-Diz A. Trustworthy artificial intelligence in Alzheimer’s disease: state of the art, opportunities, and challenges. Artif Intell Rev 2023. [DOI: 10.1007/s10462-023-10415-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
8
|
Alzheimer’s Disease Prediction Algorithm Based on Group Convolution and a Joint Loss Function. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1854718. [PMID: 36277022 PMCID: PMC9581650 DOI: 10.1155/2022/1854718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) can effectively predict by 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) of the brain, but current PET images still suffer from indistinct lesion features, low signal-to-noise ratios, and severe artefacts, resulting in poor prediction accuracy for patients with mild cognitive impairment (MCI) and unclear lesion features. In this paper, an AD prediction algorithm based on group convolution and a joint loss function is proposed. First, a group convolutional backbone network based on ResNet18 is designed to extract lesion features from multiple channels, which makes the expression ability of the network improved to a great extent. Then, a hybrid attention mechanism is presented, which enables the network to focus on target regions and learn feature weights, so as to enhance the network's learning ability of the lesion regions that are relevant to disease diagnosis. Finally, a joint loss function, that avoids the overfitting phenomenon, increases the generalization of the model, and improves prediction accuracy by adding a regularization loss function to the conventional cross-entropy function, is proposed. Experiments conducted on the public Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset show that the algorithm we proposed gives a prediction accuracy improvement of 2.4% over that of the current AD prediction algorithm, thus proving the effectiveness and availability of the new algorithm.
Collapse
|
9
|
Dartora CM, de Moura LV, Koole M, Marques da Silva AM. Discriminating Aging Cognitive Decline Spectrum Using PET and Magnetic Resonance Image Features. J Alzheimers Dis 2022; 89:977-991. [DOI: 10.3233/jad-215164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The population aging increased the prevalence of brain diseases, like Alzheimer’s disease (AD), and early identification of individuals with higher odds of cognitive decline is essential to maintain quality of life. Imaging evaluation of individuals at risk of cognitive decline includes biomarkers extracted from brain positron emission tomography (PET) and structural magnetic resonance imaging (MRI). Objective: We propose investigating ensemble models to classify groups in the aging cognitive decline spectrum by combining features extracted from single imaging modalities and combinations of imaging modalities (FDG+AMY+MRI, and a PET ensemble). Methods: We group imaging data of 131 individuals into four classes related to the individuals’ cognitive assessment in baseline and follow-up: stable cognitive non-impaired; individuals converting to mild cognitive impairment (MCI) syndrome; stable MCI; and Alzheimer’s clinical syndrome. We assess the performance of four algorithms using leave-one-out cross-validation: decision tree classifier, random forest (RF), light gradient boosting machine (LGBM), and categorical boosting (CAT). The performance analysis of models is evaluated using balanced accuracy before and after using Shapley Additive exPlanations with recursive feature elimination (SHAP-RFECV) method. Results: Our results show that feature selection with CAT or RF algorithms have the best overall performance in discriminating early cognitive decline spectrum mainly using MRI imaging features. Conclusion: Use of CAT or RF algorithms with SHAP-RFECV shows good discrimination of early stages of aging cognitive decline, mainly using MRI image features. Further work is required to analyze the impact of selected brain regions and their correlation with cognitive decline spectrum.
Collapse
Affiliation(s)
| | | | - Michel Koole
- KU Leuven, Nuclear Medicine and Molecular Imaging, Department of Imagingand Pathology, Medical Imaging Research Center, Leuven, Belgium
| | - Ana Maria Marques da Silva
- PUCRS, School of Medicine, Porto Alegre, Brazil
- PUCRS, School of Technology, Porto Alegre, Brazil
- PUCRS, Brain Institute of Rio Grande do Sul (BraIns), Porto Alegre, Brazil
| | | |
Collapse
|
10
|
Zhang J, He X, Qing L, Xu Y, Liu Y, Chen H. Multi-scale discriminative regions analysis in FDG-PET imaging for early diagnosis of Alzheimer's disease. J Neural Eng 2022; 19. [PMID: 35882218 DOI: 10.1088/1741-2552/ac8450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/26/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Alzheimer's disease (AD) is a degenerative brain disorder, one of the main causes of death in elderly people, so early diagnosis of AD is vital to prompt access to medication and medical care. Fluorodeoxyglucose positron emission tomography (FDG-PET) proves to be effective to help understand neurological changes via measuring glucose uptake. Our aim is to explore information-rich regions of FDG-PET imaging, which enhance the accuracy and interpretability of AD-related diagnosis. APPROACH We develop a novel method for early diagnosis of AD based on multi-scale discriminative regions in FDG-PET imaging, which considers the diagnosis interpretability. Specifically, a multi-scale region localization (MSRL) module is discussed to automatically identify disease-related discriminative regions in full-volume FDG-PET images in an unsupervised manner, upon which a confidence score is designed to evaluate the prioritization of regions according to the density distribution of anomalies. Then, the proposed multi-scale region classification (MSRC) module adaptively fuses multi-scale region representations and makes decision fusion, which not only reduces useless information but also offers complementary information. Most of previous methods concentrate on discriminating AD from cognitively normal (CN), while mild cognitive impairment (MCI), a transitional state, facilitates early diagnosis. Therefore, our method is further applied to multiple AD-related diagnosis tasks, not limited to AD vs. CN. MAIN RESULTS Experimental results on the ADNI dataset show that the proposed method achieves superior performance over state-of-the-art FDG-PET-based approaches. Besides, some cerebral cortices highlighted by extracted regions cohere with medical research, further demonstrating the superiority. SIGNIFICANCE This work offers an effective method to achieve AD diagnosis and detect disease-affected regions in FDG-PET imaging. Our results could be beneficial for providing an additional opinion on the clinical diagnosis.
Collapse
Affiliation(s)
- Jin Zhang
- Sichuan University, College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan, China, Chengdu, Sichuan, 610065, CHINA
| | - Xiaohai He
- Sichuan University, College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan, China, Chengdu, Sichuan, 610065, CHINA
| | - Linbo Qing
- Sichuan University, College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan, China, Chengdu, Sichuan, 610065, CHINA
| | - Yining Xu
- Sichuan University, College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan, China, Chengdu, Sichuan, 610065, CHINA
| | - Yan Liu
- Chengdu Third People's Hospital, Department of Neurology, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China, Chengdu, Sichuan, 610014, CHINA
| | - Honggang Chen
- Sichuan University, College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan, China, Chengdu, Sichuan, 610065, CHINA
| |
Collapse
|
11
|
Liu R, Li G, Gao M, Cai W, Ning X. Large Margin and Local Structure Preservation Sparse Representation Classifier for Alzheimer’s Magnetic Resonance Imaging Classification. Front Aging Neurosci 2022; 14:916020. [PMID: 35693338 PMCID: PMC9177229 DOI: 10.3389/fnagi.2022.916020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/09/2022] [Indexed: 11/15/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive dementia in which the brain shrinks as the disease progresses. The use of machine learning and brain magnetic resonance imaging (MRI) for the early diagnosis of AD has a high probability of clinical value and social significance. Sparse representation classifier (SRC) is widely used in MRI image classification. However, the traditional SRC only considers the reconstruction error and classification error of the dictionary, and does not consider the global and local structural information between images, which results in unsatisfactory classification performance. Therefore, a large margin and local structure preservation sparse representation classifier (LMLS-SRC) is developed in this manuscript. The LMLS-SRC algorithm uses the classification large margin term based on the representation coefficient, which results in compactness between representation coefficients of the same class and a large margin between representation coefficients of different classes. The LMLS-SRC algorithm uses local structure preservation term to inherit the manifold structure of the original data. In addition, the LMLS-SRC algorithm imposes the ℓ2,1-norm on the representation coefficients to enhance the sparsity and robustness of the model. Experiments on the KAGGLE Alzheimer’s dataset show that the LMLS-SRC algorithm can effectively diagnose non AD, moderate AD, mild AD, and very mild AD.
Collapse
Affiliation(s)
- Runmin Liu
- College of Sports Engineering and Information Technology, Wuhan Sports University, Wuhan, China
| | - Guangjun Li
- College of Sports Engineering and Information Technology, Wuhan Sports University, Wuhan, China
- *Correspondence: Guangjun Li,
| | - Ming Gao
- College of Sports Science and Technology, Wuhan Sports University, Wuhan, China
| | - Weiwei Cai
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
- AiTech Artificial Intelligence Research Institute, Changsha, China
| | - Xin Ning
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
AutoEncoder-based feature ranking for Alzheimer Disease classification using PET image. MACHINE LEARNING WITH APPLICATIONS 2021. [DOI: 10.1016/j.mlwa.2021.100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
13
|
Grueso S, Viejo-Sobera R. Machine learning methods for predicting progression from mild cognitive impairment to Alzheimer's disease dementia: a systematic review. Alzheimers Res Ther 2021; 13:162. [PMID: 34583745 PMCID: PMC8480074 DOI: 10.1186/s13195-021-00900-w] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/12/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND An increase in lifespan in our society is a double-edged sword that entails a growing number of patients with neurocognitive disorders, Alzheimer's disease being the most prevalent. Advances in medical imaging and computational power enable new methods for the early detection of neurocognitive disorders with the goal of preventing or reducing cognitive decline. Computer-aided image analysis and early detection of changes in cognition is a promising approach for patients with mild cognitive impairment, sometimes a prodromal stage of Alzheimer's disease dementia. METHODS We conducted a systematic review following PRISMA guidelines of studies where machine learning was applied to neuroimaging data in order to predict whether patients with mild cognitive impairment might develop Alzheimer's disease dementia or remain stable. After removing duplicates, we screened 452 studies and selected 116 for qualitative analysis. RESULTS Most studies used magnetic resonance image (MRI) and positron emission tomography (PET) data but also magnetoencephalography. The datasets were mainly extracted from the Alzheimer's disease neuroimaging initiative (ADNI) database with some exceptions. Regarding the algorithms used, the most common was support vector machine with a mean accuracy of 75.4%, but convolutional neural networks achieved a higher mean accuracy of 78.5%. Studies combining MRI and PET achieved overall better classification accuracy than studies that only used one neuroimaging technique. In general, the more complex models such as those based on deep learning, combined with multimodal and multidimensional data (neuroimaging, clinical, cognitive, genetic, and behavioral) achieved the best performance. CONCLUSIONS Although the performance of the different methods still has room for improvement, the results are promising and this methodology has a great potential as a support tool for clinicians and healthcare professionals.
Collapse
Affiliation(s)
- Sergio Grueso
- Cognitive NeuroLab, Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Rambla del Poblenou 156, 08018, Barcelona, Spain.
| | - Raquel Viejo-Sobera
- Cognitive NeuroLab, Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Rambla del Poblenou 156, 08018, Barcelona, Spain
| |
Collapse
|
14
|
Genetic algorithm with logistic regression feature selection for Alzheimer’s disease classification. Neural Comput Appl 2021. [DOI: 10.1007/s00521-020-05596-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Pan X, Phan TL, Adel M, Fossati C, Gaidon T, Wojak J, Guedj E. Multi-View Separable Pyramid Network for AD Prediction at MCI Stage by 18F-FDG Brain PET Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:81-92. [PMID: 32894711 DOI: 10.1109/tmi.2020.3022591] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Alzheimer's Disease (AD), one of the main causes of death in elderly people, is characterized by Mild Cognitive Impairment (MCI) at prodromal stage. Nevertheless, only part of MCI subjects could progress to AD. The main objective of this paper is thus to identify those who will develop a dementia of AD type among MCI patients. 18F-FluoroDeoxyGlucose Positron Emission Tomography (18F-FDG PET) serves as a neuroimaging modality for early diagnosis as it can reflect neural activity via measuring glucose uptake at resting-state. In this paper, we design a deep network on 18F-FDG PET modality to address the problem of AD identification at early MCI stage. To this end, a Multi-view Separable Pyramid Network (MiSePyNet) is proposed, in which representations are learned from axial, coronal and sagittal views of PET scans so as to offer complementary information and then combined to make a decision jointly. Different from the widely and naturally used 3D convolution operations for 3D images, the proposed architecture is deployed with separable convolution from slice-wise to spatial-wise successively, which can retain the spatial information and reduce training parameters compared to 2D and 3D networks, respectively. Experiments on ADNI dataset show that the proposed method can yield better performance than both traditional and deep learning-based algorithms for predicting the progression of Mild Cognitive Impairment, with a classification accuracy of 83.05%.
Collapse
|
16
|
Lu C, Yang M, Li M, Li Y, Wu FX, Wang J. Predicting Human lncRNA-Disease Associations Based on Geometric Matrix Completion. IEEE J Biomed Health Inform 2020; 24:2420-2429. [DOI: 10.1109/jbhi.2019.2958389] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
17
|
Gupta Y, Kim JI, Kim BC, Kwon GR. Classification and Graphical Analysis of Alzheimer's Disease and Its Prodromal Stage Using Multimodal Features From Structural, Diffusion, and Functional Neuroimaging Data and the APOE Genotype. Front Aging Neurosci 2020; 12:238. [PMID: 32848713 PMCID: PMC7406801 DOI: 10.3389/fnagi.2020.00238] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/08/2020] [Indexed: 12/26/2022] Open
Abstract
Graphical, voxel, and region-based analysis has become a popular approach to studying neurodegenerative disorders such as Alzheimer's disease (AD) and its prodromal stage [mild cognitive impairment (MCI)]. These methods have been used previously for classification or discrimination of AD in subjects in a prodromal stage called stable MCI (MCIs), which does not convert to AD but remains stable over a period of time, and converting MCI (MCIc), which converts to AD, but the results reported across similar studies are often inconsistent. Furthermore, the classification accuracy for MCIs vs. MCIc is limited. In this study, we propose combining different neuroimaging modalities (sMRI, FDG-PET, AV45-PET, DTI, and rs-fMRI) with the apolipoprotein-E genotype to form a multimodal system for the discrimination of AD, and to increase the classification accuracy. Initially, we used two well-known analyses to extract features from each neuroimage for the discrimination of AD: whole-brain parcelation analysis (or region-based analysis), and voxel-wise analysis (or voxel-based morphometry). We also investigated graphical analysis (nodal and group) for all six binary classification groups (AD vs. HC, MCIs vs. MCIc, AD vs. MCIc, AD vs. MCIs, HC vs. MCIc, and HC vs. MCIs). Data for a total of 129 subjects (33 AD, 30 MCIs, 31 MCIc, and 35 HCs) for each imaging modality were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) homepage. These data also include two APOE genotype data points for the subjects. Moreover, we used the 2-mm AICHA atlas with the NiftyReg registration toolbox to extract 384 brain regions from each PET (FDG and AV45) and sMRI image. For the rs-fMRI images, we used the DPARSF toolbox in MATLAB for the automatic extraction of data and the results for REHO, ALFF, and fALFF. We also used the pyClusterROI script for the automatic parcelation of each rs-fMRI image into 200 brain regions. For the DTI images, we used the FSL (Version 6.0) toolbox for the extraction of fractional anisotropy (FA) images to calculate a tract-based spatial statistic. Moreover, we used the PANDA toolbox to obtain 50 white-matter-region-parcellated FA images on the basis of the 2-mm JHU-ICBM-labeled template atlas. To integrate the different modalities and different complementary information into one form, and to optimize the classifier, we used the multiple kernel learning (MKL) framework. The obtained results indicated that our multimodal approach yields a significant improvement in accuracy over any single modality alone. The areas under the curve obtained by the proposed method were 97.78, 96.94, 95.56, 96.25, 96.67, and 96.59% for AD vs. HC, MCIs vs. MCIc, AD vs. MCIc, AD vs. MCIs, HC vs. MCIc, and HC vs. MCIs binary classification, respectively. Our proposed multimodal method improved the classification result for MCIs vs. MCIc groups compared with the unimodal classification results. Our study found that the (left/right) precentral region was present in all six binary classification groups (this region can be considered the most significant region). Furthermore, using nodal network topology, we found that FDG, AV45-PET, and rs-fMRI were the most important neuroimages, and showed many affected regions relative to other modalities. We also compared our results with recently published results.
Collapse
Affiliation(s)
- Yubraj Gupta
- Department of Information and Communication Engineering, Chosun University, Gwangju, South Korea
| | - Ji-In Kim
- Department of Information and Communication Engineering, Chosun University, Gwangju, South Korea
| | - Byeong Chae Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, South Korea
| | - Goo-Rak Kwon
- Department of Information and Communication Engineering, Chosun University, Gwangju, South Korea
| |
Collapse
|