1
|
Bhagyalaxmi K, Dwarakanath B. CDCG-UNet: Chaotic Optimization Assisted Brain Tumor Segmentation Based on Dilated Channel Gate Attention U-Net Model. Neuroinformatics 2025; 23:12. [PMID: 39841321 DOI: 10.1007/s12021-024-09701-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 01/23/2025]
Abstract
Brain tumours are one of the most deadly and noticeable types of cancer, affecting both children and adults. One of the major drawbacks in brain tumour identification is the late diagnosis and high cost of brain tumour-detecting devices. Most existing approaches use ML algorithms to address problems, but they have drawbacks such as low accuracy, high loss, and high computing cost. To address these challenges, a novel U-Net model for tumour segmentation in magnetic resonance images (MRI) is proposed. Initially, images are claimed from the dataset and pre-processed with the Probabilistic Hybrid Wiener filter (PHWF) to remove unwanted noise and improve image quality. To reduce model complexity, the pre-processed images are submitted to a feature extraction procedure known as 3D Convolutional Vision Transformer (3D-VT). To perform the segmentation approach using chaotic optimization assisted Dilated Channel Gate attention U-Net (CDCG-UNet) model to segment brain tumour regions effectively. The proposed approach segments tumour portions as whole tumour (WT), tumour Core (TC), and Enhancing Tumour (ET) positions. The optimization loss function can be performed using the Chaotic Harris Shrinking Spiral optimization algorithm (CHSOA). The proposed CDCG-UNet model is evaluated with three datasets: BRATS 2021, BRATS 2020, and BRATS 2023. For the BRATS 2021 dataset, the proposed CDCG-UNet model obtained a dice score of 0.972 for ET, 0.987 for CT, and 0.98 for WT. For the BRATS 2020 dataset, the proposed CDCG-UNet model produced a dice score of 98.87% for ET, 98.67% for CT, and 99.1% for WT. The CDCG-UNet model is further evaluated using the BRATS 2023 dataset, which yields 98.42% for ET, 98.08% for CT, and 99.3% for WT.
Collapse
Affiliation(s)
- K Bhagyalaxmi
- Department of Computer Science and Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Ramapuram, Chennai, 600089, India.
| | - B Dwarakanath
- Department of Information Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Ramapuram, Chennai, 600089, India
| |
Collapse
|
2
|
Zhang WJ, Chen WT, Liu CH, Chen SW, Lai YH, You SD. Feasibility Study of Detecting and Segmenting Small Brain Tumors in a Small MRI Dataset with Self-Supervised Learning. Diagnostics (Basel) 2025; 15:249. [PMID: 39941179 PMCID: PMC11817956 DOI: 10.3390/diagnostics15030249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Objectives: This paper studies the segmentation and detection of small metastatic brain tumors. This study aims to evaluate the feasibility of training a deep neural network for the segmentation and detection of metastatic brain tumors in MRI using a very small dataset of 33 cases, by leveraging large public datasets of primary tumors; Methods: This study explores various methods, including supervised learning, two transfer learning approaches, and self-supervised learning, utilizing U-net and Swin UNETR models; Results: The self-supervised learning approach utilizing the Swin UNETR model yielded the best performance. The Dice score for small brain tumors was approximately 0.19. Sensitivity reached 100%, while specificity was 54.5%. When excluding subjects with hyperintensities, the specificity improved to 80.0%; Conclusions: It is feasible to train a model using self-supervised learning and a small dataset for the segmentation and detection of small brain tumors.
Collapse
Affiliation(s)
- Wei-Jun Zhang
- Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei 106, Taiwan; (W.-J.Z.); (C.-H.L.)
| | - Wei-Teing Chen
- Division of Thoracic Medicine, Department of Medicine, Cheng Hsin General Hospital, Taipei 112, Taiwan
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chien-Hung Liu
- Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei 106, Taiwan; (W.-J.Z.); (C.-H.L.)
| | - Shiuan-Wen Chen
- Department of Electrical and Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 1A1, Canada;
| | - Yu-Hua Lai
- Division of Neurology, Department of Medicine, Cheng Hsin General Hospital, Taipei 112, Taiwan;
| | - Shingchern D. You
- Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei 106, Taiwan; (W.-J.Z.); (C.-H.L.)
| |
Collapse
|
3
|
Rohilla S, Jain S. Detection of Brain Tumor Employing Residual Network-based Optimized Deep Learning. Curr Comput Aided Drug Des 2025; 21:15-27. [PMID: 37587819 DOI: 10.2174/1573409920666230816090626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Diagnosis and treatment planning play a very vital role in improving the survival of oncological patients. However, there is high variability in the shape, size, and structure of the tumor, making automatic segmentation difficult. The automatic and accurate detection and segmentation methods for brain tumors are proposed in this paper. METHODS A modified ResNet50 model was used for tumor detection, and a ResUNetmodel-based convolutional neural network for segmentation is proposed in this paper. The detection and segmentation were performed on the same dataset consisting of pre-contrast, FLAIR, and postcontrast MRI images of 110 patients collected from the cancer imaging archive. Due to the use of residual networks, the authors observed improvement in evaluation parameters, such as accuracy for tumor detection and dice similarity coefficient for tumor segmentation. RESULTS The accuracy of tumor detection and dice similarity coefficient achieved by the segmentation model were 96.77% and 0.893, respectively, for the TCIA dataset. The results were compared based on manual segmentation and existing segmentation techniques. The tumor mask was also individually compared to the ground truth using the SSIM value. The proposed detection and segmentation models were validated on BraTS2015 and BraTS2017 datasets, and the results were consensus. CONCLUSION The use of residual networks in both the detection and the segmentation model resulted in improved accuracy and DSC score. DSC score was increased by 5.9% compared to the UNet model, and the accuracy of the model was increased from 92% to 96.77% for the test set.
Collapse
Affiliation(s)
- Saransh Rohilla
- Department of Electronics and Communication Engineering, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
| | - Shruti Jain
- Department of Electronics and Communication Engineering, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
| |
Collapse
|
4
|
Lv P, Lv J, Hong Z, Xu L. An Integrated Navigation Method Aided by Position Correction Model and Velocity Model for AUVs. SENSORS (BASEL, SWITZERLAND) 2024; 24:5396. [PMID: 39205090 PMCID: PMC11358989 DOI: 10.3390/s24165396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
When autonomous underwater vehicles (AUVs) perform underwater tasks, the absence of GPS position assistance can lead to a decrease in the accuracy of traditional navigation systems, such as the extended Kalman filter (EKF), due to the accumulation of errors. To enhance the navigation accuracy of AUVs in the absence of position assistance, this paper proposes an innovative navigation method that integrates a position correction model and a velocity model. Specifically, a velocity model is developed using a dynamic model and the Optimal Pruning Extreme Learning Machine (OP-ELM) method. This velocity model is trained online to provide velocity outputs during the intervals when the Doppler Velocity Log (DVL) is not updating, ensuring more consistent and reliable velocity estimation. Additionally, a position correction model (PCM) is constructed, based on a hybrid gated recurrent neural network (HGRNN). This model is specifically designed to correct the AUV's navigation position when GPS data are unavailable underwater. The HGRNN utilizes historical navigation data and patterns learned during training to predict and adjust the AUV's estimated position, thereby reducing the drift caused by the lack of real-time position updates. Experimental results demonstrate that the proposed VM-PCM-EKF algorithm can significantly improve the positioning accuracy of the navigation system, with a maximum accuracy improvement of 87.2% compared to conventional EKF algorithms. This method not only improves the reliability and accuracy of AUV missions but also opens up new possibilities for more complex and extended underwater operations.
Collapse
Affiliation(s)
- Pengfei Lv
- Ocean College, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (P.L.); (Z.H.)
| | - Junyi Lv
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China;
| | - Zhichao Hong
- Ocean College, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (P.L.); (Z.H.)
- Jiangsu Marine Technology Innovation Center, Nantong 226199, China
| | - Lixin Xu
- Ocean College, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (P.L.); (Z.H.)
- Jiangsu Marine Technology Innovation Center, Nantong 226199, China
| |
Collapse
|
5
|
Razzak I, Naz S, Alinejad-Rokny H, Nguyen TN, Khalifa F. A Cascaded Mutliresolution Ensemble Deep Learning Framework for Large Scale Alzheimer's Disease Detection Using Brain MRIs. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:573-581. [PMID: 36322495 DOI: 10.1109/tcbb.2022.3219032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Alzheimer's is progressive and irreversible type of dementia, which causes degeneration and death of cells and their connections in the brain. AD worsens over time and greatly impacts patients' life and affects their important mental functions, including thinking, the ability to carry on a conversation, and judgment and response to environment. Clinically, there is no single test to effectively diagnose Alzheimer disease. However, computed tomography (CT) and magnetic resonance imaging (MRI) scans can be used to help in AD diagnosis by observing critical changes in the size of different brain areas, typically parietal and temporal lobes areas. In this work, an integrative mulitresolutional ensemble deep learning-based framework is proposed to achieve better predictive performance for the diagnosis of Alzheimer disease. Unlike ResNet, DenseNet and their variants proposed pipeline utilizes PartialNet in a hierarchical design tailored to AD detection using brain MRIs. The advantage of the proposed analysis system is that PartialNet diversified the depth and deep supervision. Additionally, it also incorporates the properties of identity mappings which makes it powerful in better learning due to feature reuse. Besides, the proposed ensemble PartialNet is better in vanishing gradient, diminishing forward-flow with low number of parameters and better training time in comparison to its counter network. The proposed analysis pipeline has been tested and evaluated on benchmark ADNI dataset collected from 379 subjects patients. Quantitative validation of the obtained results documented our framework's capability, outperforming state-of-the-art learning approaches for both multi-and binary-class AD detection.
Collapse
|
6
|
Yue Y, Li N, Zhang G, Xing W, Zhu Z, Liu X, Song S, Ta D. A transformer-guided cross-modality adaptive feature fusion framework for esophageal gross tumor volume segmentation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 251:108216. [PMID: 38761412 DOI: 10.1016/j.cmpb.2024.108216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/17/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND AND OBJECTIVE Accurate segmentation of esophageal gross tumor volume (GTV) indirectly enhances the efficacy of radiotherapy for patients with esophagus cancer. In this domain, learning-based methods have been employed to fuse cross-modality positron emission tomography (PET) and computed tomography (CT) images, aiming to improve segmentation accuracy. This fusion is essential as it combines functional metabolic information from PET with anatomical information from CT, providing complementary information. While the existing three-dimensional (3D) segmentation method has achieved state-of-the-art (SOTA) performance, it typically relies on pure-convolution architectures, limiting its ability to capture long-range spatial dependencies due to convolution's confinement to a local receptive field. To address this limitation and further enhance esophageal GTV segmentation performance, this work proposes a transformer-guided cross-modality adaptive feature fusion network, referred to as TransAttPSNN, which is based on cross-modality PET/CT scans. METHODS Specifically, we establish an attention progressive semantically-nested network (AttPSNN) by incorporating the convolutional attention mechanism into the progressive semantically-nested network (PSNN). Subsequently, we devise a plug-and-play transformer-guided cross-modality adaptive feature fusion model, which is inserted between the multi-scale feature counterparts of a two-stream AttPSNN backbone (one for the PET modality flow and another for the CT modality flow), resulting in the proposed TransAttPSNN architecture. RESULTS Through extensive four-fold cross-validation experiments on the clinical PET/CT cohort. The proposed approach acquires a Dice similarity coefficient (DSC) of 0.76 ± 0.13, a Hausdorff distance (HD) of 9.38 ± 8.76 mm, and a Mean surface distance (MSD) of 1.13 ± 0.94 mm, outperforming the SOTA competing methods. The qualitative results show a satisfying consistency with the lesion areas. CONCLUSIONS The devised transformer-guided cross-modality adaptive feature fusion module integrates the strengths of PET and CT, effectively enhancing the segmentation performance of esophageal GTV. The proposed TransAttPSNN has further advanced the research of esophageal GTV segmentation.
Collapse
Affiliation(s)
- Yaoting Yue
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, PR China
| | - Nan Li
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 201321, PR China
| | - Gaobo Zhang
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, PR China
| | - Wenyu Xing
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, PR China
| | - Zhibin Zhu
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, PR China; School of Physics and Electromechanical Engineering, Hexi University, Zhangye 734000, Gansu, PR China
| | - Xin Liu
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, PR China.
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 201321, PR China.
| | - Dean Ta
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, PR China; Academy for Engineering and Technology, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
7
|
Li P, Li Z, Wang Z, Li C, Wang M. mResU-Net: multi-scale residual U-Net-based brain tumor segmentation from multimodal MRI. Med Biol Eng Comput 2024; 62:641-651. [PMID: 37981627 DOI: 10.1007/s11517-023-02965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/01/2023] [Indexed: 11/21/2023]
Abstract
Brain tumor segmentation is an important direction in medical image processing, and its main goal is to accurately mark the tumor part in brain MRI. This study proposes a brand new end-to-end model for brain tumor segmentation, which is a multi-scale deep residual convolutional neural network called mResU-Net. The semantic gap between the encoder and decoder is bridged by using skip connections in the U-Net structure. The residual structure is used to alleviate the vanishing gradient problem during training and ensure sufficient information in deep networks. On this basis, multi-scale convolution kernels are used to improve the segmentation accuracy of targets of different sizes. At the same time, we also integrate channel attention modules into the network to improve its accuracy. The proposed model has an average dice score of 0.9289, 0.9277, and 0.8965 for tumor core (TC), whole tumor (WT), and enhanced tumor (ET) on the BraTS 2021 dataset, respectively. Comparing the segmentation results of this method with existing techniques shows that mResU-Net can significantly improve the segmentation performance of brain tumor subregions.
Collapse
Affiliation(s)
- Pengcheng Li
- School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, 150000, China.
| | - Zhihao Li
- School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, 150000, China
| | - Zijian Wang
- School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, 150000, China
| | - Chaoxiang Li
- School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, 150000, China
| | - Monan Wang
- School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, 150000, China
| |
Collapse
|
8
|
Akter A, Nosheen N, Ahmed S, Hossain M, Yousuf MA, Almoyad MAA, Hasan KF, Moni MA. Robust clinical applicable CNN and U-Net based algorithm for MRI classification and segmentation for brain tumor. EXPERT SYSTEMS WITH APPLICATIONS 2024; 238:122347. [DOI: 10.1016/j.eswa.2023.122347] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
|
9
|
Burgess J, Nirschl JJ, Zanellati MC, Lozano A, Cohen S, Yeung-Levy S. Orientation-invariant autoencoders learn robust representations for shape profiling of cells and organelles. Nat Commun 2024; 15:1022. [PMID: 38310122 PMCID: PMC10838319 DOI: 10.1038/s41467-024-45362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/19/2024] [Indexed: 02/05/2024] Open
Abstract
Cell and organelle shape are driven by diverse genetic and environmental factors and thus accurate quantification of cellular morphology is essential to experimental cell biology. Autoencoders are a popular tool for unsupervised biological image analysis because they learn a low-dimensional representation that maps images to feature vectors to generate a semantically meaningful embedding space of morphological variation. The learned feature vectors can also be used for clustering, dimensionality reduction, outlier detection, and supervised learning problems. Shape properties do not change with orientation, and thus we argue that representation learning methods should encode this orientation invariance. We show that conventional autoencoders are sensitive to orientation, which can lead to suboptimal performance on downstream tasks. To address this, we develop O2-variational autoencoder (O2-VAE), an unsupervised method that learns robust, orientation-invariant representations. We use O2-VAE to discover morphology subgroups in segmented cells and mitochondria, detect outlier cells, and rapidly characterise cellular shape and texture in large datasets, including in a newly generated synthetic benchmark.
Collapse
Affiliation(s)
- James Burgess
- Institute for Computational & Mathematical Engineering, Stanford University, Stanford, CA, USA.
| | - Jeffrey J Nirschl
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Maria-Clara Zanellati
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alejandro Lozano
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Sarah Cohen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Serena Yeung-Levy
- Departments of Biomedical Data Science, Computer Science, and Electrical Engineering, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
- Clinical Excellence Research Center, School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Sharma P, Nayak DR, Balabantaray BK, Tanveer M, Nayak R. A survey on cancer detection via convolutional neural networks: Current challenges and future directions. Neural Netw 2024; 169:637-659. [PMID: 37972509 DOI: 10.1016/j.neunet.2023.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/21/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Cancer is a condition in which abnormal cells uncontrollably split and damage the body tissues. Hence, detecting cancer at an early stage is highly essential. Currently, medical images play an indispensable role in detecting various cancers; however, manual interpretation of these images by radiologists is observer-dependent, time-consuming, and tedious. An automatic decision-making process is thus an essential need for cancer detection and diagnosis. This paper presents a comprehensive survey on automated cancer detection in various human body organs, namely, the breast, lung, liver, prostate, brain, skin, and colon, using convolutional neural networks (CNN) and medical imaging techniques. It also includes a brief discussion about deep learning based on state-of-the-art cancer detection methods, their outcomes, and the possible medical imaging data used. Eventually, the description of the dataset used for cancer detection, the limitations of the existing solutions, future trends, and challenges in this domain are discussed. The utmost goal of this paper is to provide a piece of comprehensive and insightful information to researchers who have a keen interest in developing CNN-based models for cancer detection.
Collapse
Affiliation(s)
- Pallabi Sharma
- School of Computer Science, UPES, Dehradun, 248007, Uttarakhand, India.
| | - Deepak Ranjan Nayak
- Department of Computer Science and Engineering, Malaviya National Institute of Technology, Jaipur, 302017, Rajasthan, India.
| | - Bunil Kumar Balabantaray
- Computer Science and Engineering, National Institute of Technology Meghalaya, Shillong, 793003, Meghalaya, India.
| | - M Tanveer
- Department of Mathematics, Indian Institute of Technology Indore, Simrol, 453552, Indore, India.
| | - Rajashree Nayak
- School of Applied Sciences, Birla Global University, Bhubaneswar, 751029, Odisha, India.
| |
Collapse
|
11
|
Sharif MI, Li JP, Khan MA, Kadry S, Tariq U. M3BTCNet: multi model brain tumor classification using metaheuristic deep neural network features optimization. Neural Comput Appl 2024; 36:95-110. [DOI: 10.1007/s00521-022-07204-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 03/29/2022] [Indexed: 12/01/2022]
|
12
|
Kaifi R. A Review of Recent Advances in Brain Tumor Diagnosis Based on AI-Based Classification. Diagnostics (Basel) 2023; 13:3007. [PMID: 37761373 PMCID: PMC10527911 DOI: 10.3390/diagnostics13183007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Uncontrolled and fast cell proliferation is the cause of brain tumors. Early cancer detection is vitally important to save many lives. Brain tumors can be divided into several categories depending on the kind, place of origin, pace of development, and stage of progression; as a result, tumor classification is crucial for targeted therapy. Brain tumor segmentation aims to delineate accurately the areas of brain tumors. A specialist with a thorough understanding of brain illnesses is needed to manually identify the proper type of brain tumor. Additionally, processing many images takes time and is tiresome. Therefore, automatic segmentation and classification techniques are required to speed up and enhance the diagnosis of brain tumors. Tumors can be quickly and safely detected by brain scans using imaging modalities, including computed tomography (CT), magnetic resonance imaging (MRI), and others. Machine learning (ML) and artificial intelligence (AI) have shown promise in developing algorithms that aid in automatic classification and segmentation utilizing various imaging modalities. The right segmentation method must be used to precisely classify patients with brain tumors to enhance diagnosis and treatment. This review describes multiple types of brain tumors, publicly accessible datasets, enhancement methods, segmentation, feature extraction, classification, machine learning techniques, deep learning, and learning through a transfer to study brain tumors. In this study, we attempted to synthesize brain cancer imaging modalities with automatically computer-assisted methodologies for brain cancer characterization in ML and DL frameworks. Finding the current problems with the engineering methodologies currently in use and predicting a future paradigm are other goals of this article.
Collapse
Affiliation(s)
- Reham Kaifi
- Department of Radiological Sciences, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Jeddah City 22384, Saudi Arabia;
- King Abdullah International Medical Research Center, Jeddah City 22384, Saudi Arabia
- Medical Imaging Department, Ministry of the National Guard—Health Affairs, Jeddah City 11426, Saudi Arabia
| |
Collapse
|
13
|
Raad JD, Chinnam RB, Arslanturk S, Tan S, Jeong JW, Mody S. Unsupervised abnormality detection in neonatal MRI brain scans using deep learning. Sci Rep 2023; 13:11489. [PMID: 37460615 PMCID: PMC10352269 DOI: 10.1038/s41598-023-38430-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
Analysis of 3D medical imaging data has been a large topic of focus in the area of Machine Learning/Artificial Intelligence, though little work has been done in algorithmic (particularly unsupervised) analysis of neonatal brain MRI's. A myriad of conditions can manifest at an early age, including neonatal encephalopathy (NE), which can result in lifelong physical consequences. As such, there is a dire need for better biomarkers of NE and other conditions. The objective of the study is to improve identification of anomalies and prognostication of neonatal MRI brain scans. We introduce a framework designed to support the analysis and assessment of neonatal MRI brain scans, the results of which can be used as an aid to neuroradiologists. We explored the efficacy of the framework through iterations of several deep convolutional Autoencoder (AE) unsupervised modeling architectures designed to learn normalcy of the neonatal brain structure. We tested this framework on the developing human connectome project (dHCP) dataset with 97 patients that were previously categorized by severity. Our framework demonstrated the model's ability to identify and distinguish subtle morphological signatures present in brain structures. Normal and abnormal neonatal brain scans can be distinguished with reasonable accuracy, correctly categorizing them in up to 83% of cases. Most critically, new brain anomalies originally missed during the radiological reading were identified and corroborated by a neuroradiologist. This framework and our modeling approach demonstrate an ability to improve prognostication of neonatal brain conditions and are able to localize new anomalies.
Collapse
Affiliation(s)
- Jad Dino Raad
- Industrial and Systems Engineering Department, Wayne State University, Detroit, MI, 48201, USA
| | - Ratna Babu Chinnam
- Industrial and Systems Engineering Department, Wayne State University, Detroit, MI, 48201, USA
| | - Suzan Arslanturk
- Computer Science Department, Wayne State University, Detroit, MI, 48201, USA.
| | - Sidhartha Tan
- Department of Pediatrics, Wayne State University, Detroit, MI, 48201, USA
| | - Jeong-Won Jeong
- Department of Pediatrics, Wayne State University, Detroit, MI, 48201, USA
| | - Swati Mody
- Division of Pediatric Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
14
|
Ali HS, Ismail AI, El‐Rabaie EM, Abd El‐Samie FE. Deep residual architectures and ensemble learning for efficient brain tumour classification. EXPERT SYSTEMS 2023; 40. [DOI: 10.1111/exsy.13226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 12/12/2022] [Indexed: 09/02/2023]
Abstract
AbstractThe prompt and accurate detection of brain tumours is essential for disease management and life‐saving. This paper introduces an efficient and robust completely automated system for classifying the three prominent types of brain tumour. The aim is to contribute for enhanced classification accuracy with minimum pre‐processing and less inference time. The power of deep networks is thoroughly investigated, with and without transfer learning. Fine‐tuned deep Residual Networks (ResNets) with depth up to 101 are introduced to manage the complex nature of brain images, and to capture their microstructural information. The proposed residual architectures with their in‐depth representations are evaluated and compared to other fine‐tuned networks (AlexNet, GoogLeNet and VGG16). A novel Convolutional Network (ConvNet) built and trained from scratch is also proposed for tumour type classification. Proven models are integrated by combining their decisions using majority voting to obtain the final classification accuracy. Results show that the residual architectures can be optimized efficiently, and a noticeable accuracy can be gained with them. Although ResNet models are deeper than VGG16, they show lower complexity. Results also indicate that building ensemble of models is a successful strategy to enhance the system performance. Each model in the ensemble learns specific patterns with certain filters. This stochastic nature boosts the classification accuracy. The accuracies obtained from ResNet18, ResNet101, and the proposed ConvNet are 98.91%, 97.39% and 95.43%, respectively. The accuracy based on decision fusion for the three networks is 99.57%, which is better than those of all state‐of‐the‐art techniques. The accuracy obtained with ResNet50 is 98.26%, and its fusion with ResNet18 and the designed network yields a 99.35% accuracy, which is also better than those of previous methods, meanwhile achieving minimum detection time requirements. Finally, visual representation of the learned features is provided to understand what the models have learned.
Collapse
Affiliation(s)
- Hanaa S. Ali
- Electronics & Communication Department, Faculty of Engineering Zagazig University Zagazig Egypt
| | - Asmaa I. Ismail
- Department of Electronics and Electrical Communications, Faculty of Electronic Engineering Menoufia University Menouf Egypt
| | - El‐Sayed M. El‐Rabaie
- Department of Electronics and Electrical Communications, Faculty of Electronic Engineering Menoufia University Menouf Egypt
| | - Fathi E. Abd El‐Samie
- Department of Electronics and Electrical Communications, Faculty of Electronic Engineering Menoufia University Menouf Egypt
| |
Collapse
|
15
|
Yang H, Zhou T, Zhou Y, Zhang Y, Fu H. Flexible Fusion Network for Multi-Modal Brain Tumor Segmentation. IEEE J Biomed Health Inform 2023; 27:3349-3359. [PMID: 37126623 DOI: 10.1109/jbhi.2023.3271808] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Automated brain tumor segmentation is crucial for aiding brain disease diagnosis and evaluating disease progress. Currently, magnetic resonance imaging (MRI) is a routinely adopted approach in the field of brain tumor segmentation that can provide different modality images. It is critical to leverage multi-modal images to boost brain tumor segmentation performance. Existing works commonly concentrate on generating a shared representation by fusing multi-modal data, while few methods take into account modality-specific characteristics. Besides, how to efficiently fuse arbitrary numbers of modalities is still a difficult task. In this study, we present a flexible fusion network (termed F 2Net) for multi-modal brain tumor segmentation, which can flexibly fuse arbitrary numbers of multi-modal information to explore complementary information while maintaining the specific characteristics of each modality. Our F 2Net is based on the encoder-decoder structure, which utilizes two Transformer-based feature learning streams and a cross-modal shared learning network to extract individual and shared feature representations. To effectively integrate the knowledge from the multi-modality data, we propose a cross-modal feature-enhanced module (CFM) and a multi-modal collaboration module (MCM), which aims at fusing the multi-modal features into the shared learning network and incorporating the features from encoders into the shared decoder, respectively. Extensive experimental results on multiple benchmark datasets demonstrate the effectiveness of our F 2Net over other state-of-the-art segmentation methods.
Collapse
|
16
|
Bairagi VK, Gumaste PP, Rajput SH, Chethan K S. Automatic brain tumor detection using CNN transfer learning approach. Med Biol Eng Comput 2023:10.1007/s11517-023-02820-3. [PMID: 36949356 DOI: 10.1007/s11517-023-02820-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/27/2023] [Indexed: 03/24/2023]
Abstract
Automatic brain tumor detection is a challenging task as tumors vary in their position, mass, nature, and similarities found between brain lesions and normal tissues. The tumor detection is vital and urgent as it is related to the lifespan of the affected person. Medical experts commonly utilize advanced imaging practices such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound images to decide the presence of abnormal tissues. It is a very time-consuming task to extract the tumor information from the enormous quantity of information produced by MRI volumetric data examination using a manual approach. In manual tumor detection, precise identification of tumor along with its details is a complex task. Henceforth, reliable and automatic detection systems are vital. In this paper, convolutional neural network based automated brain tumor recognition approach is proposed to analyze the MRI images and classify them into tumorous and non-tumorous classes. Various convolutional neutral network architectures like Alexnet, VGG-16, GooGLeNet, and RNN are explored and compared together. The paper focuses on the tuning of the hyperparameters for the two architectures namely Alexnet and VGG-16. Exploratory results on BRATS 2013, BRATS 2015, and OPEN I dataset with 621 images confirmed that the accuracy of 98.67% is achieved using CNN Alexnet for automatic detection of brain tumors while testing on 125 images.
Collapse
Affiliation(s)
- Vinayak K Bairagi
- Department of Electronics and Telecommunication, AISSMS Institute of Information Technology, Pune, India.
| | - Pratima Purushottam Gumaste
- Department of Electronics and Telecommunication, JSPM's Jayawantrao Sawant College of Engineering, Pune, India
| | - Seema H Rajput
- Department of Electronics and Telecommunications, Cummins College of Engineering for Women, Savitribai Phule Pune University, Pune, India
| | - Chethan K S
- RV Institute of Technology and Management, Bangalore, India
| |
Collapse
|
17
|
Mahesh Kumar G, Parthasarathy E. Development of an enhanced U-Net model for brain tumor segmentation with optimized architecture. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
18
|
Yue Y, Li N, Zhang G, Zhu Z, Liu X, Song S, Ta D. Automatic segmentation of esophageal gross tumor volume in 18F-FDG PET/CT images via GloD-LoATUNet. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 229:107266. [PMID: 36470035 DOI: 10.1016/j.cmpb.2022.107266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/08/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND OBJECTIVE For esophageal squamous cell carcinoma, radiotherapy is one of the primary treatments. During the planning before radiotherapy, the intractable task is to precisely delineate the esophageal gross tumor volume (GTV) on medical images. In current clinical practice, the manual delineation suffers from high intra- and inter-rater variability, while also exhausting the oncologists on a treadmill. There is an urgent demand for effective computer-aided automatic segmentation methods. To this end, we designed a novel deep network, dubbed as GloD-LoATUNet. METHODS GloD-LoATUNet follows the effective U-shape structure. On the contractile path, the global deformable dense attention transformer (GloDAT), local attention transformer (LoAT), and convolution blocks are integrated to model long-range dependencies and localized information. On the center bridge and the expanding path, convolution blocks are adopted to upsample the extracted representations for pixel-wise semantic prediction. Between the peer-to-peer counterparts, enhanced skip connections are built to compensate for the lost spatial information and dependencies. By exploiting complementary strengths of the GloDAT, LoAT, and convolution, GloD-LoATUNet has remarkable representation learning capabilities, performing well in the prediction of the small and variable esophageal GTV. RESULTS The proposed approach was validated in the clinical positron emission tomography/computed tomography (PET/CT) cohort. For 4 different data partitions, we report the Dice similarity coefficient (DSC), Hausdorff distance (HD), and Mean surface distance (MSD) as: 0.83±0.13, 4.88±9.16 mm, and 1.40±4.11 mm; 0.84±0.12, 6.89±12.04 mm, and 1.18±3.02 mm; 0.84±0.13, 3.89±7.64 mm, and 1.28±3.68 mm; 0.86±0.09, 3.71±4.79 mm, and 0.90±0.37 mm; respectively. The predicted contours present a desirable consistency with the ground truth. CONCLUSIONS The inspiring results confirm the accuracy and generalizability of the proposed model, demonstrating the potential for automatic segmentation of esophageal GTV in clinical practice.
Collapse
Affiliation(s)
- Yaoting Yue
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China; Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Nan Li
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 201321, China
| | - Gaobo Zhang
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Zhibin Zhu
- School of Physics and Electromechanical Engineering, Hexi University, Zhangye 734000, Gansu, China.
| | - Xin Liu
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 201321, China.
| | - Dean Ta
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China; Academy for Engineering and Technology, Fudan University, Shanghai 200433, China.
| |
Collapse
|
19
|
Fang L, Wang X. Multi-input Unet model based on the integrated block and the aggregation connection for MRI brain tumor segmentation. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Particle Swarm Optimization and Two-Way Fixed-Effects Analysis of Variance for Efficient Brain Tumor Segmentation. Cancers (Basel) 2022; 14:cancers14184399. [PMID: 36139559 PMCID: PMC9496881 DOI: 10.3390/cancers14184399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Segmentation of brain tumor images from magnetic resonance imaging (MRI) is a challenging topic in medical image analysis. The brain tumor can take many shapes, and MRI images vary considerably in intensity, making lesion detection difficult for radiologists. This paper proposes a three-step approach to solving this problem: (1) pre-processing, based on morphological operations, is applied to remove the skull bone from the image; (2) the particle swarm optimization (PSO) algorithm, with a two-way fixed-effects analysis of variance (ANOVA)-based fitness function, is used to find the optimal block containing the brain lesion; (3) the K-means clustering algorithm is adopted, to classify the detected block as tumor or non-tumor. An extensive experimental analysis, including visual and statistical evaluations, was conducted, using two MRI databases: a private database provided by the Kouba imaging center—Algiers (KICA)—and the multimodal brain tumor segmentation challenge (BraTS) 2015 database. The results show that the proposed methodology achieved impressive performance, compared to several competing approaches. Abstract Segmentation of brain tumor images, to refine the detection and understanding of abnormal masses in the brain, is an important research topic in medical imaging. This paper proposes a new segmentation method, consisting of three main steps, to detect brain lesions using magnetic resonance imaging (MRI). In the first step, the parts of the image delineating the skull bone are removed, to exclude insignificant data. In the second step, which is the main contribution of this study, the particle swarm optimization (PSO) technique is applied, to detect the block that contains the brain lesions. The fitness function, used to determine the best block among all candidate blocks, is based on a two-way fixed-effects analysis of variance (ANOVA). In the last step of the algorithm, the K-means segmentation method is used in the lesion block, to classify it as a tumor or not. A thorough evaluation of the proposed algorithm was performed, using: (1) a private MRI database provided by the Kouba imaging center—Algiers (KICA); (2) the multimodal brain tumor segmentation challenge (BraTS) 2015 database. Estimates of the selected fitness function were first compared to those based on the sum-of-absolute-differences (SAD) dissimilarity criterion, to demonstrate the efficiency and robustness of the ANOVA. The performance of the optimized brain tumor segmentation algorithm was then compared to the results of several state-of-the-art techniques. The results obtained, by using the Dice coefficient, Jaccard distance, correlation coefficient, and root mean square error (RMSE) measurements, demonstrated the superiority of the proposed optimized segmentation algorithm over equivalent techniques.
Collapse
|
21
|
Li P, Wu W, Liu L, Michael Serry F, Wang J, Han H. Automatic brain tumor segmentation from Multiparametric MRI based on cascaded 3D U-Net and 3D U-Net++. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Sunsuhi G, Albin Jose S. An Adaptive Eroded Deep Convolutional neural network for brain image segmentation and classification using Inception ResnetV2. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
An Effective Approach to Detect and Identify Brain Tumors Using Transfer Learning. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115645] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Brain tumors are considered one of the most serious, prominent and life-threatening diseases globally. Brain tumors cause thousands of deaths every year around the globe because of the rapid growth of tumor cells. Therefore, timely analysis and automatic detection of brain tumors are required to save the lives of thousands of people around the globe. Recently, deep transfer learning (TL) approaches are most widely used to detect and classify the three most prominent types of brain tumors, i.e., glioma, meningioma and pituitary. For this purpose, we employ state-of-the-art pre-trained TL techniques to identify and detect glioma, meningioma and pituitary brain tumors. The aim is to identify the performance of nine pre-trained TL classifiers, i.e., Inceptionresnetv2, Inceptionv3, Xception, Resnet18, Resnet50, Resnet101, Shufflenet, Densenet201 and Mobilenetv2, by automatically identifying and detecting brain tumors using a fine-grained classification approach. For this, the TL algorithms are evaluated on a baseline brain tumor classification (MRI) dataset, which is freely available on Kaggle. Additionally, all deep learning (DL) models are fine-tuned with their default values. The fine-grained classification experiment demonstrates that the inceptionresnetv2 TL algorithm performs better and achieves the highest accuracy in detecting and classifying glioma, meningioma and pituitary brain tumors, and hence it can be classified as the best classification algorithm. We achieve 98.91% accuracy, 98.28% precision, 99.75% recall and 99% F-measure values with the inceptionresnetv2 TL algorithm, which out-performs the other DL algorithms. Additionally, to ensure and validate the performance of TL classifiers, we compare the efficacy of the inceptionresnetv2 TL algorithm with hybrid approaches, in which we use convolutional neural networks (CNN) for deep feature extraction and a Support Vector Machine (SVM) for classification. Similarly, the experiment’s results show that TL algorithms, and inceptionresnetv2 in particular, out-perform the state-of-the-art DL algorithms in classifying brain MRI images into glioma, meningioma, and pituitary. The hybrid DL approaches used in the experiments are Mobilnetv2, Densenet201, Squeeznet, Alexnet, Googlenet, Inceptionv3, Resnet50, Resnet18, Resnet101, Xception, Inceptionresnetv3, VGG19 and Shufflenet.
Collapse
|
24
|
Raza R, Ijaz Bajwa U, Mehmood Y, Waqas Anwar M, Hassan Jamal M. dResU-Net: 3D deep residual U-Net based brain tumor segmentation from multimodal MRI. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Lakshmi MJ, Nagaraja Rao S. Brain tumor magnetic resonance image classification: a deep learning approach. Soft comput 2022. [DOI: 10.1007/s00500-022-07163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Wong KK, Cummock JS, Li G, Ghosh R, Xu P, Volpi JJ, Wong STC. Automatic Segmentation in Acute Ischemic Stroke: Prognostic Significance of Topological Stroke Volumes on Stroke Outcome. Stroke 2022; 53:2896-2905. [PMID: 35545938 DOI: 10.1161/strokeaha.121.037982] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Stroke infarct volume predicts patient disability and has utility for clinical trial outcomes. Accurate infarct volume measurement requires manual segmentation of stroke boundaries in diffusion-weighted magnetic resonance imaging scans which is time-consuming and subject to variability. Automatic infarct segmentation should be robust to rotation and reflection; however, prior work has not encoded this property into deep learning architecture. Here, we use rotation-reflection equivariance and train a deep learning model to segment stroke volumes in a large cohort of well-characterized patients with acute ischemic stroke in different vascular territories. METHODS In this retrospective study, patients were selected from a stroke registry at Houston Methodist Hospital. Eight hundred seventy-five patients with acute ischemic stroke in any brain area who had magnetic resonance imaging with diffusion-weighted imaging were included for analysis and split 80/20 for training/testing. Infarct volumes were manually segmented by consensus of 3 independent clinical experts and cross-referenced against radiology reports. A rotation-reflection equivariant model was developed based on U-Net and grouped convolutions. Segmentation performance was evaluated using Dice score, precision, and recall. Ninety-day modified Rankin Scale outcome prediction was also evaluated using clinical variables and segmented stroke volumes in different brain regions. RESULTS Segmentation model Dice scores are 0.88 (95% CI, 0.87-0.89; training) and 0.85 (0.82-0.88; testing). The modified Rankin Scale outcome prediction AUC using stroke volume in 30 refined brain regions based upon modified Rankin Scale-relevance areas adjusted for clinical variables was 0.80 (0.76-0.83) with an accuracy of 0.75 (0.72-0.78). CONCLUSIONS We trained a deep learning model with encoded rotation-reflection equivariance to segment acute ischemic stroke lesions in diffusion- weighted imaging using a large data set from the Houston Methodist stroke center. The model achieved competitive performance in 175 well-balanced hold-out testing cases that include strokes from different vascular territories. Furthermore, the location specific stroke volume segmentations from the deep learning model combined with clinical factors demonstrated high AUC and accuracy for 90-day modified Rankin Scale in an outcome prediction model.
Collapse
Affiliation(s)
- Kelvin K Wong
- Department of Radiology, Systems Medicine and Bioengineering, Houston Methodist Cancer Center, Houston Methodist Hospital, Weill Cornell Medicine, TX (K.K.W., J.S.C., R.G., S.T.C.W.).,The Ting Tsung and Wei Fong Chao Center for BRAIN, Houston Methodist Hospital, TX (K.K.W., S.T.C.W.).,Department of Radiology, Houston Methodist Institute for Academic Medicine, TX. (K.K.W., S.T.C.W.)
| | - Jonathon S Cummock
- Department of Radiology, Systems Medicine and Bioengineering, Houston Methodist Cancer Center, Houston Methodist Hospital, Weill Cornell Medicine, TX (K.K.W., J.S.C., R.G., S.T.C.W.)
| | - Guihua Li
- Department of Neurology, Guangdong Second People's Hospital, China (G.L.)
| | - Rahul Ghosh
- Department of Radiology, Systems Medicine and Bioengineering, Houston Methodist Cancer Center, Houston Methodist Hospital, Weill Cornell Medicine, TX (K.K.W., J.S.C., R.G., S.T.C.W.).,MD/PhD Program, Texas A&M University College of Medicine, Bryan. (J.S.C., R.G.)
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangdong, China (P.X.)
| | - John J Volpi
- Department of Neurology, Houston Methodist Institute for Academic Medicine, TX. (J.J.V.).,MD/PhD Program, Texas A&M University College of Medicine, Bryan. (J.S.C., R.G.)
| | - Stephen T C Wong
- Department of Radiology, Systems Medicine and Bioengineering, Houston Methodist Cancer Center, Houston Methodist Hospital, Weill Cornell Medicine, TX (K.K.W., J.S.C., R.G., S.T.C.W.).,The Ting Tsung and Wei Fong Chao Center for BRAIN, Houston Methodist Hospital, TX (K.K.W., S.T.C.W.).,Department of Radiology, Houston Methodist Institute for Academic Medicine, TX. (K.K.W., S.T.C.W.).,Department of Neuroscience and Experimental Therapeutics, Texas A&M University College of Medicine, Bryan. (S.T.C.W.)
| |
Collapse
|
27
|
Nafisah SI, Muhammad G. Tuberculosis detection in chest radiograph using convolutional neural network architecture and explainable artificial intelligence. Neural Comput Appl 2022; 36:1-21. [PMID: 35462630 PMCID: PMC9016694 DOI: 10.1007/s00521-022-07258-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/29/2022] [Indexed: 12/18/2022]
Abstract
In most regions of the world, tuberculosis (TB) is classified as a malignant infectious disease that can be fatal. Using advanced tools and technology, automatic analysis and classification of chest X-rays (CXRs) into TB and non-TB can be a reliable alternative to the subjective assessment performed by healthcare professionals. Thus, in the study, we propose an automatic TB detection system using advanced deep learning (DL) models. A significant portion of a CXR image is dark, providing no information for diagnosis and potentially confusing DL models. Therefore, in the proposed system, we use sophisticated segmentation networks to extract the region of interest from multimedia CXRs. Then, segmented images are fed into the DL models. For the subjective assessment, we use explainable artificial intelligence to visualize TB-infected parts of the lung. We use different convolutional neural network (CNN) models in our experiments and compare their classification performance using three publicly available CXR datasets. EfficientNetB3, one of the CNN models, achieves the highest accuracy of 99.1%, with a receiver operating characteristic of 99.9%, and an average accuracy of 98.7%. Experiment results confirm that using segmented lung CXR images produces better performance than does using raw lung CXR images.
Collapse
Affiliation(s)
- Saad I. Nafisah
- Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, 11543 Saudi Arabia
| | - Ghulam Muhammad
- Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, 11543 Saudi Arabia
| |
Collapse
|
28
|
Das S, Nayak GK, Saba L, Kalra M, Suri JS, Saxena S. An artificial intelligence framework and its bias for brain tumor segmentation: A narrative review. Comput Biol Med 2022; 143:105273. [PMID: 35228172 DOI: 10.1016/j.compbiomed.2022.105273] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Artificial intelligence (AI) has become a prominent technique for medical diagnosis and represents an essential role in detecting brain tumors. Although AI-based models are widely used in brain lesion segmentation (BLS), understanding their effectiveness is challenging due to their complexity and diversity. Several reviews on brain tumor segmentation are available, but none of them describe a link between the threats due to risk-of-bias (RoB) in AI and its architectures. In our review, we focused on linking RoB and different AI-based architectural Cluster in popular DL framework. Further, due to variance in these designs and input data types in medical imaging, it is necessary to present a narrative review considering all facets of BLS. APPROACH The proposed study uses a PRISMA strategy based on 75 relevant studies found by searching PubMed, Scopus, and Google Scholar. Based on the architectural evolution, DL studies were subsequently categorized into four classes: convolutional neural network (CNN)-based, encoder-decoder (ED)-based, transfer learning (TL)-based, and hybrid DL (HDL)-based architectures. These studies were then analyzed considering 32 AI attributes, with clusters including AI architecture, imaging modalities, hyper-parameters, performance evaluation metrics, and clinical evaluation. Then, after these studies were scored for all attributes, a composite score was computed, normalized, and ranked. Thereafter, a bias cutoff (AP(ai)Bias 1.0, AtheroPoint, Roseville, CA, USA) was established to detect low-, moderate- and high-bias studies. CONCLUSION The four classes of architectures, from best-to worst-performing, are TL > ED > CNN > HDL. ED-based models had the lowest AI bias for BLS. This study presents a set of three primary and six secondary recommendations for lowering the RoB.
Collapse
Affiliation(s)
- Suchismita Das
- CSE Department, International Institute of Information Technology, Bhubaneswar, Odisha, India; CSE Department, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - G K Nayak
- CSE Department, International Institute of Information Technology, Bhubaneswar, Odisha, India
| | - Luca Saba
- Department of Radiology, AOU, University of Cagliari, Cagliari, Italy
| | - Mannudeep Kalra
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, USA
| | - Jasjit S Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™ LLC, Roseville, CA, USA.
| | - Sanjay Saxena
- CSE Department, International Institute of Information Technology, Bhubaneswar, Odisha, India
| |
Collapse
|
29
|
Xu W, Yang H, Zhang M, Cao Z, Pan X, Liu W. Brain tumor segmentation with corner attention and high-dimensional perceptual loss. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
30
|
Razzak I, Naz S. Unit-Vise: Deep Shallow Unit-Vise Residual Neural Networks With Transition Layer For Expert Level Skin Cancer Classification. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1225-1234. [PMID: 33211666 DOI: 10.1109/tcbb.2020.3039358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Many modern neural network architectures with over parameterized regime have been used for identification of skin cancer. Recent work showed that network, where the hidden units are polynomially smaller in size, showed better performance than overparameterized models. Hence, in this paper, we present multistage unit-vise deep dense residual network with transition and additional supervision blocks that enforces the shorter connections resulting in better feature representation. Unlike ResNet, We divided the network into several stages, and each stage consists of several dense connected residual units that support residual learning with dense connectivity and limited the skip connectivity. Thus, each stage can consider the features from its earlier layers locally as well as less complicated in comparison to its counter network. Evaluation results on ISIC-2018 challenge consisting of 10,015 training images show considerable improvement over other approaches achieving 98.05 percent accuracy and improving on the best results achieved in comparison to state of the art methods. The code of Unit-vise network is publicly available.1.
Collapse
|
31
|
Razzak I, Naz S, Ashraf A, Khalifa F, Bouadjenek MR, Mumtaz S. Mutliresolutional ensemble PartialNet for Alzheimer detection using magnetic resonance imaging data. INT J INTELL SYST 2022. [DOI: 10.1002/int.22856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Imran Razzak
- School of Information Technology, Deakin University Geelong Victoria Australia
| | - Saeeda Naz
- Department of Computer Science Govt Girls Postgraduate College No. 1 Abbotabad, HED, KP Pakistan
| | - Abida Ashraf
- Department of Computer Science Govt Girls Postgraduate College No. 1 Abbotabad, HED, KP Pakistan
| | - Fahmi Khalifa
- Electronics and Communications Engineering Mansoura University Mansoura Egypt
| | | | - Shahid Mumtaz
- Instituto de Telecomunicações Aveiro Aveiro Portugal
| |
Collapse
|
32
|
Nandhini I, Manjula D, Sugumaran V. Multi-Class Brain Disease Classification Using Modified Pre-Trained Convolutional Neural Networks Model with Substantial Data Augmentation. JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS 2022. [DOI: 10.1166/jmihi.2022.3936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The integration of various algorithms in the medical field to diagnose brain disorders is significant. Generally, Computed Tomography, Magnetic Resonance Imaging techniques have been used to diagnose brain images. Subsequently, segmentation and classification of brain disease remain
an exigent task in medical image processing. This paper presents an extended model for brain image classification based on a Modified pre-trained convolutional neural network model with extensive data augmentation. The proposed system has been efficiently trained using the technique of substantial
data augmentation in the pre-processing stage. In the first phase, the pre-trained models namely AlexNet, VGGNet-19, and ResNet-50 are employed to classify the brain disease. In the second phase, the idea of integrating the existing pre-trained model with a multiclass linear support vector
machine is incorporated. Hence, the SoftMax layer of pre-trained models is replaced with a multi class linear support vector machine classifier is proposed. These proposed modified pre-trained model is employed to classify brain images as normal, inflammatory, degenerative, neoplastic and
cerebrovascular diseases. The training loss, mean square error, and classification accuracy have been improved through the concept of Cyclic Learning rate. The appropriateness of transfer learning has been demonstrated by applying three convolutional neural network models, namely, AlexNet,
VGGNet-19, and ResNet-50. It has been observed that the modified pre-trained models achieved a higher classification rate of accuracies of 93.45% when compared with a finetuned pre-trained model of 89.65%. The best classification accuracy of 92.11%, 92.83% and 93.45% has been attained in the
proposed method of the modified pre-trained model. A comparison of the proposed model with other pre-trained models is also presented.
Collapse
Affiliation(s)
- I. Nandhini
- Department of Computer Science and Engineering, CEG Campus, Anna University, Guindy, Chennai 600025, India
| | - D. Manjula
- Department of Computer Science and Engineering, CEG Campus, Anna University, Guindy, Chennai 600025, India
| | - Vijayan Sugumaran
- Department of Decision and Information Science, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
33
|
Khan MA, Alqahtani A, Khan A, Alsubai S, Binbusayyis A, Ch MMI, Yong HS, Cha J. Cucumber Leaf Diseases Recognition Using Multi Level Deep Entropy-ELM Feature Selection. APPLIED SCIENCES 2022; 12:593. [DOI: 10.3390/app12020593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Agriculture has becomes an immense area of research and is ascertained as a key element in the area of computer vision. In the agriculture field, image processing acts as a primary part. Cucumber is an important vegetable and its production in Pakistan is higher as compared to the other vegetables because of its use in salads. However, the diseases of cucumber such as Angular leaf spot, Anthracnose, blight, Downy mildew, and powdery mildew widely decrease the quality and quantity. Lately, numerous methods have been proposed for the identification and classification of diseases. Early detection and then treatment of the diseases in plants is important to prevent the crop from a disastrous decrease in yields. Many classification techniques have been proposed but still, they are facing some challenges such as noise, redundant features, and extraction of relevant features. In this work, an automated framework is proposed using deep learning and best feature selection for cucumber leaf diseases classification. In the proposed framework, initially, an augmentation technique is applied to the original images by creating more training data from existing samples and handling the problem of the imbalanced dataset. Then two different phases are utilized. In the first phase, fine-tuned four pre-trained models and select the best of them based on the accuracy. Features are extracted from the selected fine-tuned model and refined through the Entropy-ELM technique. In the second phase, fused the features of all four fine-tuned models and apply the Entropy-ELM technique, and finally fused with phase 1 selected feature. Finally, the fused features are recognized using machine learning classifiers for the final classification. The experimental process is conducted on five different datasets. On these datasets, the best-achieved accuracy is 98.4%. The proposed framework is evaluated on each step and also compared with some recent techniques. The comparison with some recent techniques showed that the proposed method obtained an improved performance.
Collapse
Affiliation(s)
| | - Abdullah Alqahtani
- College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia
| | - Aimal Khan
- Department of Computer & Software Engineering, CEME NUST Rawalpindi, Rawalpindi 46000, Pakistan
| | - Shtwai Alsubai
- College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia
| | - Adel Binbusayyis
- College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia
| | - M Munawwar Iqbal Ch
- Institute of Information Technology, Quaid-i-Azam University, Islamabad 44000, Pakistan
| | - Hwan-Seung Yong
- Department of Computer Science & Engineering, Ewha Womans University, Seoul 03760, Korea
| | - Jaehyuk Cha
- Department of Computer Science, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
34
|
Automated Detection of Brain Tumor through Magnetic Resonance Images Using Convolutional Neural Network. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3365043. [PMID: 34912889 PMCID: PMC8668304 DOI: 10.1155/2021/3365043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/20/2021] [Accepted: 11/16/2021] [Indexed: 12/30/2022]
Abstract
Brain tumor is a fatal disease, caused by the growth of abnormal cells in the brain tissues. Therefore, early and accurate detection of this disease can save patient's life. This paper proposes a novel framework for the detection of brain tumor using magnetic resonance (MR) images. The framework is based on the fully convolutional neural network (FCNN) and transfer learning techniques. The proposed framework has five stages which are preprocessing, skull stripping, CNN-based tumor segmentation, postprocessing, and transfer learning-based brain tumor binary classification. In preprocessing, the MR images are filtered to eliminate the noise and are improve the contrast. For segmentation of brain tumor images, the proposed CNN architecture is used, and for postprocessing, the global threshold technique is utilized to eliminate small nontumor regions that enhanced segmentation results. In classification, GoogleNet model is employed on three publicly available datasets. The experimental results depict that the proposed method is achieved average accuracies of 96.50%, 97.50%, and 98% for segmentation and 96.49%, 97.31%, and 98.79% for classification of brain tumor on BRATS2018, BRATS2019, and BRATS2020 datasets, respectively. The outcomes demonstrate that the proposed framework is effective and efficient that attained high performance on BRATS2020 dataset than the other two datasets. According to the experimentation results, the proposed framework outperforms other recent studies in the literature. In addition, this research will uphold doctors and clinicians for automatic diagnosis of brain tumor disease.
Collapse
|
35
|
van Kempen EJ, Post M, Mannil M, Witkam RL, Ter Laan M, Patel A, Meijer FJA, Henssen D. Performance of machine learning algorithms for glioma segmentation of brain MRI: a systematic literature review and meta-analysis. Eur Radiol 2021; 31:9638-9653. [PMID: 34019128 PMCID: PMC8589805 DOI: 10.1007/s00330-021-08035-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/04/2021] [Accepted: 05/03/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Different machine learning algorithms (MLAs) for automated segmentation of gliomas have been reported in the literature. Automated segmentation of different tumor characteristics can be of added value for the diagnostic work-up and treatment planning. The purpose of this study was to provide an overview and meta-analysis of different MLA methods. METHODS A systematic literature review and meta-analysis was performed on the eligible studies describing the segmentation of gliomas. Meta-analysis of the performance was conducted on the reported dice similarity coefficient (DSC) score of both the aggregated results as two subgroups (i.e., high-grade and low-grade gliomas). This study was registered in PROSPERO prior to initiation (CRD42020191033). RESULTS After the literature search (n = 734), 42 studies were included in the systematic literature review. Ten studies were eligible for inclusion in the meta-analysis. Overall, the MLAs from the included studies showed an overall DSC score of 0.84 (95% CI: 0.82-0.86). In addition, a DSC score of 0.83 (95% CI: 0.80-0.87) and 0.82 (95% CI: 0.78-0.87) was observed for the automated glioma segmentation of the high-grade and low-grade gliomas, respectively. However, heterogeneity was considerably high between included studies, and publication bias was observed. CONCLUSION MLAs facilitating automated segmentation of gliomas show good accuracy, which is promising for future implementation in neuroradiology. However, before actual implementation, a few hurdles are yet to be overcome. It is crucial that quality guidelines are followed when reporting on MLAs, which includes validation on an external test set. KEY POINTS • MLAs from the included studies showed an overall DSC score of 0.84 (95% CI: 0.82-0.86), indicating a good performance. • MLA performance was comparable when comparing the segmentation results of the high-grade gliomas and the low-grade gliomas. • For future studies using MLAs, it is crucial that quality guidelines are followed when reporting on MLAs, which includes validation on an external test set.
Collapse
Affiliation(s)
- Evi J van Kempen
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Max Post
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Manoj Mannil
- Clinic of Radiology, University Hospital Münster, Münster, Germany
| | - Richard L Witkam
- Department of Anaesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mark Ter Laan
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ajay Patel
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Frederick J A Meijer
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Dylan Henssen
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands.
| |
Collapse
|
36
|
Qayyum A, Mazhar M, Razzak I, Bouadjenek MR. Multilevel depth-wise context attention network with atrous mechanism for segmentation of COVID19 affected regions. Neural Comput Appl 2021; 35:1-13. [PMID: 34720443 PMCID: PMC8546198 DOI: 10.1007/s00521-021-06636-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/13/2021] [Indexed: 12/02/2022]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV-2) also named COVID-19, aggressively spread all over the world in just a few months. Since then, it has multiple variants that are far more contagious than its parent. Rapid and accurate diagnosis of COVID-19 and its variants are crucial for its treatment, analysis of lungs damage and quarantine management. Deep learning-based solution for efficient and accurate diagnosis to COVID-19 and its variants using Chest X-rays, and computed tomography images could help to counter its outbreak. This work presents a novel depth-wise residual network with an atrous mechanism for accurate segmentation and lesion location of COVID-19 affected areas using volumetric CT images. The proposed framework consists of 3D depth-wise and 3D residual squeeze and excitation block in cascaded and parallel to capture uniformly multi-scale context (low-level detailed, mid-level comprehensive and high-level rich semantic features). The squeeze and excitation block adaptively recalibrates channel-wise feature responses by explicitly modeling inter-dependencies between various channels. We further have introduced an atrous mechanism with a different atrous rate as the bottom layer. Extensive experiments on benchmark CT datasets showed considerable gain (5%) for accurate segmentation and lesion location of COVID-19 affected areas.
Collapse
Affiliation(s)
- Abdul Qayyum
- Computer Science Department, University of Burgundy, Dijon, France
| | - Mona Mazhar
- Department of Computer Engineering and Mathematics, University Rovira i Virgili, Tarragona, Spain
| | - Imran Razzak
- School of Information Technology, Deakin University, Geelong, Australia
| | | |
Collapse
|
37
|
Zhang Y, Zhong P, Jie D, Wu J, Zeng S, Chu J, Liu Y, Wu EX, Tang X. Brain Tumor Segmentation From Multi-Modal MR Images via Ensembling UNets. FRONTIERS IN RADIOLOGY 2021; 1:704888. [PMID: 37492172 PMCID: PMC10365098 DOI: 10.3389/fradi.2021.704888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/27/2021] [Indexed: 07/27/2023]
Abstract
Glioma is a type of severe brain tumor, and its accurate segmentation is useful in surgery planning and progression evaluation. Based on different biological properties, the glioma can be divided into three partially-overlapping regions of interest, including whole tumor (WT), tumor core (TC), and enhancing tumor (ET). Recently, UNet has identified its effectiveness in automatically segmenting brain tumor from multi-modal magnetic resonance (MR) images. In this work, instead of network architecture, we focus on making use of prior knowledge (brain parcellation), training and testing strategy (joint 3D+2D), ensemble and post-processing to improve the brain tumor segmentation performance. We explore the accuracy of three UNets with different inputs, and then ensemble the corresponding three outputs, followed by post-processing to achieve the final segmentation. Similar to most existing works, the first UNet uses 3D patches of multi-modal MR images as the input. The second UNet uses brain parcellation as an additional input. And the third UNet is inputted by 2D slices of multi-modal MR images, brain parcellation, and probability maps of WT, TC, and ET obtained from the second UNet. Then, we sequentially unify the WT segmentation from the third UNet and the fused TC and ET segmentation from the first and the second UNets as the complete tumor segmentation. Finally, we adopt a post-processing strategy by labeling small ET as non-enhancing tumor to correct some false-positive ET segmentation. On one publicly-available challenge validation dataset (BraTS2018), the proposed segmentation pipeline yielded average Dice scores of 91.03/86.44/80.58% and average 95% Hausdorff distances of 3.76/6.73/2.51 mm for WT/TC/ET, exhibiting superior segmentation performance over other state-of-the-art methods. We then evaluated the proposed method on the BraTS2020 training data through five-fold cross validation, with similar performance having also been observed. The proposed method was finally evaluated on 10 in-house data, the effectiveness of which has been established qualitatively by professional radiologists.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Tencent Music Entertainment, Shenzhen, China
| | - Pinyuan Zhong
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Dabin Jie
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jiewei Wu
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, China
| | - Shanmei Zeng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianping Chu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yilong Liu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ed X. Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xiaoying Tang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
38
|
Zhang Y, Lu Y, Chen W, Chang Y, Gu H, Yu B. MSMANet: A multi-scale mesh aggregation network for brain tumor segmentation. Appl Soft Comput 2021. [DOI: 10.1016/j.asoc.2021.107733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
39
|
Lotlikar VS, Satpute N, Gupta A. Brain Tumor Detection Using Machine Learning and Deep Learning: A Review. Curr Med Imaging 2021; 18:604-622. [PMID: 34561990 DOI: 10.2174/1573405617666210923144739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/09/2021] [Accepted: 07/27/2021] [Indexed: 11/22/2022]
Abstract
According to the international agency for research on cancer (IARC), the mortality rate due to brain tumors is 76%. It is required to detect the brain tumors as early as possible and to provide the patient with the required treatment to avoid any fatal situation. With the recent advancement in technology, it is possible to automatically detect the tumor from images such as magnetic resonance imaging (MRI) and computed tomography scans using a computer-aided design. Machine learning and deep learning techniques have gained significance among researchers in medical fields, especially convolutional neural networks (CNN), due to their ability to analyze large amounts of complex image data and perform classification. The objective of this review article is to present an exhaustive study of techniques such as preprocessing, machine learning, and deep learning that have been adopted in the last 15 years and based on it to present a detailed comparative analysis. The challenges encountered by researchers in the past for tumor detection have been discussed along with the future scopes that can be taken by the researchers as the future work. Clinical challenges that are encountered have also been discussed, which are missing in existing review articles.
Collapse
Affiliation(s)
- Venkatesh S Lotlikar
- MTech scholar, Department of E&TC Engineering, College of Engineering Pune, India
| | - Nitin Satpute
- Electrical and Computer Engineering, Aarhus University. Denmark
| | - Aditya Gupta
- Adjunct Faculty, Department of E&TC Engineering, College of Engineering Pune, India
| |
Collapse
|
40
|
Biratu ES, Schwenker F, Ayano YM, Debelee TG. A Survey of Brain Tumor Segmentation and Classification Algorithms. J Imaging 2021; 7:jimaging7090179. [PMID: 34564105 PMCID: PMC8465364 DOI: 10.3390/jimaging7090179] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 01/16/2023] Open
Abstract
A brain Magnetic resonance imaging (MRI) scan of a single individual consists of several slices across the 3D anatomical view. Therefore, manual segmentation of brain tumors from magnetic resonance (MR) images is a challenging and time-consuming task. In addition, an automated brain tumor classification from an MRI scan is non-invasive so that it avoids biopsy and make the diagnosis process safer. Since the beginning of this millennia and late nineties, the effort of the research community to come-up with automatic brain tumor segmentation and classification method has been tremendous. As a result, there are ample literature on the area focusing on segmentation using region growing, traditional machine learning and deep learning methods. Similarly, a number of tasks have been performed in the area of brain tumor classification into their respective histological type, and an impressive performance results have been obtained. Considering state of-the-art methods and their performance, the purpose of this paper is to provide a comprehensive survey of three, recently proposed, major brain tumor segmentation and classification model techniques, namely, region growing, shallow machine learning and deep learning. The established works included in this survey also covers technical aspects such as the strengths and weaknesses of different approaches, pre- and post-processing techniques, feature extraction, datasets, and models' performance evaluation metrics.
Collapse
Affiliation(s)
- Erena Siyoum Biratu
- College of Electrical and Mechanical Engineering, Addis Ababa Science and Technology University, Addis Ababa 120611, Ethiopia; (E.S.B.); (T.G.D.)
| | - Friedhelm Schwenker
- Institute of Neural Information Processing, Ulm University, 89081 Ulm, Germany
- Correspondence:
| | | | - Taye Girma Debelee
- College of Electrical and Mechanical Engineering, Addis Ababa Science and Technology University, Addis Ababa 120611, Ethiopia; (E.S.B.); (T.G.D.)
- Ethiopian Artificial Intelligence Center, Addis Ababa 40782, Ethiopia;
| |
Collapse
|
41
|
Al-Masni MA, Kim DH. CMM-Net: Contextual multi-scale multi-level network for efficient biomedical image segmentation. Sci Rep 2021; 11:10191. [PMID: 33986375 PMCID: PMC8119726 DOI: 10.1038/s41598-021-89686-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/26/2021] [Indexed: 01/20/2023] Open
Abstract
Medical image segmentation of tissue abnormalities, key organs, or blood vascular system is of great significance for any computerized diagnostic system. However, automatic segmentation in medical image analysis is a challenging task since it requires sophisticated knowledge of the target organ anatomy. This paper develops an end-to-end deep learning segmentation method called Contextual Multi-Scale Multi-Level Network (CMM-Net). The main idea is to fuse the global contextual features of multiple spatial scales at every contracting convolutional network level in the U-Net. Also, we re-exploit the dilated convolution module that enables an expansion of the receptive field with different rates depending on the size of feature maps throughout the networks. In addition, an augmented testing scheme referred to as Inversion Recovery (IR) which uses logical "OR" and "AND" operators is developed. The proposed segmentation network is evaluated on three medical imaging datasets, namely ISIC 2017 for skin lesions segmentation from dermoscopy images, DRIVE for retinal blood vessels segmentation from fundus images, and BraTS 2018 for brain gliomas segmentation from MR scans. The experimental results showed superior state-of-the-art performance with overall dice similarity coefficients of 85.78%, 80.27%, and 88.96% on the segmentation of skin lesions, retinal blood vessels, and brain tumors, respectively. The proposed CMM-Net is inherently general and could be efficiently applied as a robust tool for various medical image segmentations.
Collapse
Affiliation(s)
- Mohammed A Al-Masni
- Department of Electrical and Electronic Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea
| | - Dong-Hyun Kim
- Department of Electrical and Electronic Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
42
|
Hu P, Li X, Tian Y, Tang T, Zhou T, Bai X, Zhu S, Liang T, Li J. Automatic Pancreas Segmentation in CT Images With Distance-Based Saliency-Aware DenseASPP Network. IEEE J Biomed Health Inform 2021; 25:1601-1611. [PMID: 32915752 DOI: 10.1109/jbhi.2020.3023462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pancreas identification and segmentation is an essential task in the diagnosis and prognosis of pancreas disease. Although deep neural networks have been widely applied in abdominal organ segmentation, it is still challenging for small organs (e.g. pancreas) that present low contrast, highly flexible anatomical structure and relatively small region. In recent years, coarse-to-fine methods have improved pancreas segmentation accuracy by using coarse predictions in the fine stage, but only object location is utilized and rich image context is neglected. In this paper, we propose a novel distance-based saliency-aware model, namely DSD-ASPP-Net, to fully use coarse segmentation to highlight the pancreas feature and boost accuracy in the fine segmentation stage. Specifically, a DenseASPP (Dense Atrous Spatial Pyramid Pooling) model is trained to learn the pancreas location and probability map, which is then transformed into saliency map through geodesic distance-based saliency transformation. In the fine stage, saliency-aware modules that combine saliency map and image context are introduced into DenseASPP to develop the DSD-ASPP-Net. The architecture of DenseASPP brings multi-scale feature representation and achieves larger receptive field in a denser way, which overcome the difficulties brought by variable object sizes and locations. Our method was evaluated on both public NIH pancreas dataset and local hospital dataset, and achieved an average Dice-Sørensen Coefficient (DSC) value of 85.49±4.77% on the NIH dataset, outperforming former coarse-to-fine methods.
Collapse
|
43
|
Zhang Y, Wu J, Liu Y, Chen Y, Wu EX, Tang X. MI-UNet: Multi-Inputs UNet Incorporating Brain Parcellation for Stroke Lesion Segmentation From T1-Weighted Magnetic Resonance Images. IEEE J Biomed Health Inform 2021; 25:526-535. [PMID: 32750908 DOI: 10.1109/jbhi.2020.2996783] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Stroke is a serious manifestation of various cerebrovascular diseases and one of the most dangerous diseases in the world today. Volume quantification and location detection of chronic stroke lesions provide vital biomarkers for stroke rehabilitation. Recently, deep learning has seen a rapid growth, with a great potential in segmenting medical images. In this work, unlike most deep learning-based segmentation methods utilizing only magnetic resonance (MR) images as the input, we propose and validate a novel stroke lesion segmentation approach named multi-inputs UNet (MI-UNet) that incorporates brain parcellation information, including gray matter (GM), white matter (WM) and lateral ventricle (LV). The brain parcellation is obtained from 3D diffeomorphic registration and is concatenated with the original MR image to form two-channel inputs to the subsequent MI-UNet. Effectiveness of the proposed pipeline is validated using a dataset consisting of 229 T1-weighted MR images. Experiments are conducted via a five-fold cross-validation. The proposed MI-UNet performed significantly better than UNet in both 2D and 3D settings. Our best results obtained by 3D MI-UNet has superior segmentation performance, as measured by the Dice score, Hausdorff distance, average symmetric surface distance, as well as precision, over other state-of-the-art methods.
Collapse
|
44
|
Gryska E, Schneiderman J, Björkman-Burtscher I, Heckemann RA. Automatic brain lesion segmentation on standard magnetic resonance images: a scoping review. BMJ Open 2021; 11:e042660. [PMID: 33514580 PMCID: PMC7849889 DOI: 10.1136/bmjopen-2020-042660] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Medical image analysis practices face challenges that can potentially be addressed with algorithm-based segmentation tools. In this study, we map the field of automatic MR brain lesion segmentation to understand the clinical applicability of prevalent methods and study designs, as well as challenges and limitations in the field. DESIGN Scoping review. SETTING Three databases (PubMed, IEEE Xplore and Scopus) were searched with tailored queries. Studies were included based on predefined criteria. Emerging themes during consecutive title, abstract, methods and whole-text screening were identified. The full-text analysis focused on materials, preprocessing, performance evaluation and comparison. RESULTS Out of 2990 unique articles identified through the search, 441 articles met the eligibility criteria, with an estimated growth rate of 10% per year. We present a general overview and trends in the field with regard to publication sources, segmentation principles used and types of lesions. Algorithms are predominantly evaluated by measuring the agreement of segmentation results with a trusted reference. Few articles describe measures of clinical validity. CONCLUSIONS The observed reporting practices leave room for improvement with a view to studying replication, method comparison and clinical applicability. To promote this improvement, we propose a list of recommendations for future studies in the field.
Collapse
Affiliation(s)
- Emilia Gryska
- Medical Radiation Sciences, Goteborgs universitet Institutionen for kliniska vetenskaper, Goteborg, Sweden
| | - Justin Schneiderman
- Sektionen för klinisk neurovetenskap, Goteborgs Universitet Institutionen for Neurovetenskap och fysiologi, Goteborg, Sweden
| | | | - Rolf A Heckemann
- Medical Radiation Sciences, Goteborgs universitet Institutionen for kliniska vetenskaper, Goteborg, Sweden
| |
Collapse
|
45
|
Magadza T, Viriri S. Deep Learning for Brain Tumor Segmentation: A Survey of State-of-the-Art. J Imaging 2021; 7:19. [PMID: 34460618 PMCID: PMC8321266 DOI: 10.3390/jimaging7020019] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 01/17/2023] Open
Abstract
Quantitative analysis of the brain tumors provides valuable information for understanding the tumor characteristics and treatment planning better. The accurate segmentation of lesions requires more than one image modalities with varying contrasts. As a result, manual segmentation, which is arguably the most accurate segmentation method, would be impractical for more extensive studies. Deep learning has recently emerged as a solution for quantitative analysis due to its record-shattering performance. However, medical image analysis has its unique challenges. This paper presents a review of state-of-the-art deep learning methods for brain tumor segmentation, clearly highlighting their building blocks and various strategies. We end with a critical discussion of open challenges in medical image analysis.
Collapse
Affiliation(s)
| | - Serestina Viriri
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban 4000, South Africa;
| |
Collapse
|
46
|
|
47
|
|
48
|
Zhang J, Shi Y, Sun J, Wang L, Zhou L, Gao Y, Shen D. Interactive medical image segmentation via a point-based interaction. Artif Intell Med 2020; 111:101998. [PMID: 33461691 DOI: 10.1016/j.artmed.2020.101998] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/05/2020] [Accepted: 11/23/2020] [Indexed: 11/20/2022]
Abstract
Due to low tissue contrast, irregular shape, and large location variance, segmenting the objects from different medical imaging modalities (e.g., CT, MR) is considered as an important yet challenging task. In this paper, a novel method is presented for interactive medical image segmentation with the following merits. (1) Its design is fundamentally different from previous pure patch-based and image-based segmentation methods. It is observed that during delineation, the physician repeatedly check the intensity from area inside-object to outside-object to determine the boundary, which indicates that comparison in an inside-out manner is extremely important. Thus, the method innovatively models the segmentation task as learning the representation of bi-directional sequential patches, starting from (or ending in) the given central point of the object. This can be realized by the proposed ConvRNN network embedded with a gated memory propagation unit. (2) Unlike previous interactive methods (requiring bounding box or seed points), the proposed method only asks the physician to merely click on the rough central point of the object before segmentation, which could simultaneously enhance the performance and reduce the segmentation time. (3) The method is utilized in a multi-level framework for better performance. It has been systematically evaluated in three different segmentation tasks, including CT kidney tumor, MR prostate, and PROMISE12 challenge, showing promising results compared with state-of-the-art methods.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory for Novel Software Technology, Nanjing University, China
| | - Yinghuan Shi
- State Key Laboratory for Novel Software Technology, Nanjing University, China; National Institute of Healthcare Data Science, Nanjing University, China
| | - Jinquan Sun
- State Key Laboratory for Novel Software Technology, Nanjing University, China
| | - Lei Wang
- School of Computing and Information Technology, University of Wollongong, Australia
| | - Luping Zhou
- School of Electrical and Information Engineering, University of Sydney, Australia
| | - Yang Gao
- State Key Laboratory for Novel Software Technology, Nanjing University, China; National Institute of Healthcare Data Science, Nanjing University, China
| | - Dinggang Shen
- School of Biomedical Engineering, ShanghaiTech University, China; Shanghai United Imaging Intelligence Co., Ltd., China; Department of Artificial Intelligence, Korea University, Republic of Korea
| |
Collapse
|
49
|
Amin M, Shehwar D, Ullah A, Guarda T, Tanveer TA, Anwar S. A deep learning system for health care IoT and smartphone malware detection. Neural Comput Appl 2020. [DOI: 10.1007/s00521-020-05429-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Beyond traditional approaches: a partial directed coherence with graph theory-based mental load assessment using EEG modality. Neural Comput Appl 2020. [DOI: 10.1007/s00521-020-05408-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|