1
|
Guerra A, D'Onofrio V, Ferreri F, Bologna M, Antonini A. Objective measurement versus clinician-based assessment for Parkinson's disease. Expert Rev Neurother 2023; 23:689-702. [PMID: 37366316 DOI: 10.1080/14737175.2023.2229954] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION Although clinician-based assessment through standardized clinical rating scales is currently the gold standard for quantifying motor impairment in Parkinson's disease (PD), it is not without limitations, including intra- and inter-rater variability and a degree of approximation. There is increasing evidence supporting the use of objective motion analyses to complement clinician-based assessment. Objective measurement tools hold significant potential for improving the accuracy of clinical and research-based evaluations of patients. AREAS COVERED The authors provide several examples from the literature demonstrating how different motion measurement tools, including optoelectronics, contactless and wearable systems allow for both the objective quantification and monitoring of key motor symptoms (such as bradykinesia, rigidity, tremor, and gait disturbances), and the identification of motor fluctuations in PD patients. Furthermore, they discuss how, from a clinician's perspective, objective measurements can help in various stages of PD management. EXPERT OPINION In our opinion, sufficient evidence supports the assertion that objective monitoring systems enable accurate evaluation of motor symptoms and complications in PD. A range of devices can be utilized not only to support diagnosis but also to monitor motor symptom during the disease progression and can become relevant in the therapeutic decision-making process.
Collapse
Affiliation(s)
- Andrea Guerra
- Parkinson and Movement Disorder Unit, Study Center on Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Padua, Italy
| | | | - Florinda Ferreri
- Unit of Neurology, Unit of Clinical Neurophysiology, Study Center of Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Padua, Italy
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Angelo Antonini
- Parkinson and Movement Disorder Unit, Study Center on Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Padua, Italy
| |
Collapse
|
2
|
ZhuParris A, de Goede AA, Yocarini IE, Kraaij W, Groeneveld GJ, Doll RJ. Machine Learning Techniques for Developing Remotely Monitored Central Nervous System Biomarkers Using Wearable Sensors: A Narrative Literature Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115243. [PMID: 37299969 DOI: 10.3390/s23115243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Central nervous system (CNS) disorders benefit from ongoing monitoring to assess disease progression and treatment efficacy. Mobile health (mHealth) technologies offer a means for the remote and continuous symptom monitoring of patients. Machine Learning (ML) techniques can process and engineer mHealth data into a precise and multidimensional biomarker of disease activity. OBJECTIVE This narrative literature review aims to provide an overview of the current landscape of biomarker development using mHealth technologies and ML. Additionally, it proposes recommendations to ensure the accuracy, reliability, and interpretability of these biomarkers. METHODS This review extracted relevant publications from databases such as PubMed, IEEE, and CTTI. The ML methods employed across the selected publications were then extracted, aggregated, and reviewed. RESULTS This review synthesized and presented the diverse approaches of 66 publications that address creating mHealth-based biomarkers using ML. The reviewed publications provide a foundation for effective biomarker development and offer recommendations for creating representative, reproducible, and interpretable biomarkers for future clinical trials. CONCLUSION mHealth-based and ML-derived biomarkers have great potential for the remote monitoring of CNS disorders. However, further research and standardization of study designs are needed to advance this field. With continued innovation, mHealth-based biomarkers hold promise for improving the monitoring of CNS disorders.
Collapse
Affiliation(s)
- Ahnjili ZhuParris
- Centre for Human Drug Research (CHDR), Zernikedreef 8, 2333 CL Leiden, The Netherlands
- Leiden Institute of Advanced Computer Science (LIACS), Snellius Gebouw, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
- Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Annika A de Goede
- Centre for Human Drug Research (CHDR), Zernikedreef 8, 2333 CL Leiden, The Netherlands
| | - Iris E Yocarini
- Leiden Institute of Advanced Computer Science (LIACS), Snellius Gebouw, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
| | - Wessel Kraaij
- Leiden Institute of Advanced Computer Science (LIACS), Snellius Gebouw, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
- The Netherlands Organisation for Applied Scientific Research (TNO), Anna van Buerenplein 1, 2595 DA, Den Haag, The Netherlands
| | - Geert Jan Groeneveld
- Centre for Human Drug Research (CHDR), Zernikedreef 8, 2333 CL Leiden, The Netherlands
- Leiden Institute of Advanced Computer Science (LIACS), Snellius Gebouw, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
| | - Robert Jan Doll
- Centre for Human Drug Research (CHDR), Zernikedreef 8, 2333 CL Leiden, The Netherlands
| |
Collapse
|
3
|
Lu T, Ji S, Jin W, Yang Q, Luo Q, Ren TL. Biocompatible and Long-Term Monitoring Strategies of Wearable, Ingestible and Implantable Biosensors: Reform the Next Generation Healthcare. SENSORS (BASEL, SWITZERLAND) 2023; 23:2991. [PMID: 36991702 PMCID: PMC10054135 DOI: 10.3390/s23062991] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 06/19/2023]
Abstract
Sensors enable the detection of physiological indicators and pathological markers to assist in the diagnosis, treatment, and long-term monitoring of diseases, in addition to playing an essential role in the observation and evaluation of physiological activities. The development of modern medical activities cannot be separated from the precise detection, reliable acquisition, and intelligent analysis of human body information. Therefore, sensors have become the core of new-generation health technologies along with the Internet of Things (IoTs) and artificial intelligence (AI). Previous research on the sensing of human information has conferred many superior properties on sensors, of which biocompatibility is one of the most important. Recently, biocompatible biosensors have developed rapidly to provide the possibility for the long-term and in-situ monitoring of physiological information. In this review, we summarize the ideal features and engineering realization strategies of three different types of biocompatible biosensors, including wearable, ingestible, and implantable sensors from the level of sensor designing and application. Additionally, the detection targets of the biosensors are further divided into vital life parameters (e.g., body temperature, heart rate, blood pressure, and respiratory rate), biochemical indicators, as well as physical and physiological parameters based on the clinical needs. In this review, starting from the emerging concept of next-generation diagnostics and healthcare technologies, we discuss how biocompatible sensors revolutionize the state-of-art healthcare system unprecedentedly, as well as the challenges and opportunities faced in the future development of biocompatible health sensors.
Collapse
Affiliation(s)
- Tian Lu
- School of Integrated Circuit and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Shourui Ji
- School of Integrated Circuit and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Weiqiu Jin
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qisheng Yang
- School of Integrated Circuit and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Qingquan Luo
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Tian-Ling Ren
- School of Integrated Circuit and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Mezzina G, De Venuto D. A Digital Architecture for the Real-Time Tracking of Wearing off Phenomenon in Parkinson's Disease. SENSORS (BASEL, SWITZERLAND) 2022; 22:9753. [PMID: 36560122 PMCID: PMC9780967 DOI: 10.3390/s22249753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Levodopa administration is currently the most common treatment to alleviate Parkinson's Disease (PD) symptoms. Nevertheless, prolonged use of Levodopa leads to a wearing-off (WO) phenomenon, causing symptoms to reappear. To build a personalized treatment plan aiming to manage PD and its symptoms effectively, there is a need for a technological system able to continuously and objectively assess the WO phenomenon during daily life. In this context, this paper proposes a WO tracker able to exploit neuromuscular data acquired by a dedicated wireless sensor network to discriminate between a Levodopa benefit phase and the reappearance of symptoms. The proposed architecture has been implemented on a heterogeneous computing platform, that statistically analyzes neural and muscular features to identify the best set of features to train the classifier model. Eight models among shallow and deep learning approaches are analyzed in terms of performance, timing and complexity metrics to identify the best inference engine. Experimental results on five subjects experiencing WO, showed that, in the best case, the proposed WO tracker can achieve an accuracy of ~84%, providing the inference in less than 41 ms. It is possible by employing a simple fully-connected neural network with 1 hidden layer and 32 units.
Collapse
|
5
|
Bo F, Yerebakan M, Dai Y, Wang W, Li J, Hu B, Gao S. IMU-Based Monitoring for Assistive Diagnosis and Management of IoHT: A Review. Healthcare (Basel) 2022; 10:healthcare10071210. [PMID: 35885736 PMCID: PMC9318359 DOI: 10.3390/healthcare10071210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/22/2023] Open
Abstract
With the rapid development of Internet of Things (IoT) technologies, traditional disease diagnoses carried out in medical institutions can now be performed remotely at home or even ambient environments, yielding the concept of the Internet of Health Things (IoHT). Among the diverse IoHT applications, inertial measurement unit (IMU)-based systems play a significant role in the detection of diseases in many fields, such as neurological, musculoskeletal, and mental. However, traditional numerical interpretation methods have proven to be challenging to provide satisfying detection accuracies owing to the low quality of raw data, especially under strong electromagnetic interference (EMI). To address this issue, in recent years, machine learning (ML)-based techniques have been proposed to smartly map IMU-captured data on disease detection and progress. After a decade of development, the combination of IMUs and ML algorithms for assistive disease diagnosis has become a hot topic, with an increasing number of studies reported yearly. A systematic search was conducted in four databases covering the aforementioned topic for articles published in the past six years. Eighty-one articles were included and discussed concerning two aspects: different ML techniques and application scenarios. This review yielded the conclusion that, with the help of ML technology, IMUs can serve as a crucial element in disease diagnosis, severity assessment, characteristic estimation, and monitoring during the rehabilitation process. Furthermore, it summarizes the state-of-the-art, analyzes challenges, and provides foreseeable future trends for developing IMU-ML systems for IoHT.
Collapse
Affiliation(s)
- Fan Bo
- Smart Sensing Research and Development Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; (F.B.); (W.W.)
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mustafa Yerebakan
- Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Yanning Dai
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China;
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Weibing Wang
- Smart Sensing Research and Development Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; (F.B.); (W.W.)
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Li
- Smart Sensing Research and Development Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; (F.B.); (W.W.)
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (J.L.); (B.H.); (S.G.)
| | - Boyi Hu
- Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL 32611, USA;
- Correspondence: (J.L.); (B.H.); (S.G.)
| | - Shuo Gao
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China;
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
- Correspondence: (J.L.); (B.H.); (S.G.)
| |
Collapse
|
6
|
Rehman RZU, Guan Y, Shi JQ, Alcock L, Yarnall AJ, Rochester L, Del Din S. Investigating the Impact of Environment and Data Aggregation by Walking Bout Duration on Parkinson's Disease Classification Using Machine Learning. Front Aging Neurosci 2022; 14:808518. [PMID: 35391750 PMCID: PMC8981298 DOI: 10.3389/fnagi.2022.808518] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/14/2022] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease. PD misdiagnosis can occur in early stages. Gait impairment in PD is typical and is linked with an increased fall risk and poorer quality of life. Applying machine learning (ML) models to real-world gait has the potential to be more sensitive to classify PD compared to laboratory data. Real-world gait yields multiple walking bouts (WBs), and selecting the optimal method to aggregate the data (e.g., different WB durations) is essential as this may influence classification performance. The objective of this study was to investigate the impact of environment (laboratory vs. real world) and data aggregation on ML performance for optimizing sensitivity of PD classification. Gait assessment was performed on 47 people with PD (age: 68 ± 9 years) and 52 controls [Healthy controls (HCs), age: 70 ± 7 years]. In the laboratory, participants walked at their normal pace for 2 min, while in the real world, participants were assessed over 7 days. In both environments, 14 gait characteristics were evaluated from one tri-axial accelerometer attached to the lower back. The ability of individual gait characteristics to differentiate PD from HC was evaluated using the Area Under the Curve (AUC). ML models (i.e., support vector machine, random forest, and ensemble models) applied to real-world gait showed better classification performance compared to laboratory data. Real-world gait characteristics aggregated over longer WBs (WB 30-60 s, WB > 60 s, WB > 120 s) resulted in superior discriminative performance (PD vs. HC) compared to laboratory gait characteristics (0.51 ≤ AUC ≤ 0.77). Real-world gait speed showed the highest AUC of 0.77. Overall, random forest trained on 14 gait characteristics aggregated over WBs > 60 s gave better performance (F1 score = 77.20 ± 5.51%) as compared to laboratory results (F1 Score = 68.75 ± 12.80%). Findings from this study suggest that the choice of environment and data aggregation are important to achieve maximum discrimination performance and have direct impact on ML performance for PD classification. This study highlights the importance of a harmonized approach to data analysis in order to drive future implementation and clinical use. Clinical Trial Registration [09/H0906/82].
Collapse
Affiliation(s)
- Rana Zia Ur Rehman
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Yu Guan
- School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jian Qing Shi
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Statistics and Data Science, Southern University of Science and Technology, Shenzhen, China
| | - Lisa Alcock
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alison J. Yarnall
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Lynn Rochester
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Silvia Del Din
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
7
|
Chandrabhatla AS, Pomeraniec IJ, Ksendzovsky A. Co-evolution of machine learning and digital technologies to improve monitoring of Parkinson's disease motor symptoms. NPJ Digit Med 2022; 5:32. [PMID: 35304579 PMCID: PMC8933519 DOI: 10.1038/s41746-022-00568-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/21/2022] [Indexed: 11/09/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor impairments such as tremor, bradykinesia, dyskinesia, and gait abnormalities. Current protocols assess PD symptoms during clinic visits and can be subjective. Patient diaries can help clinicians evaluate at-home symptoms, but can be incomplete or inaccurate. Therefore, researchers have developed in-home automated methods to monitor PD symptoms to enable data-driven PD diagnosis and management. We queried the US National Library of Medicine PubMed database to analyze the progression of the technologies and computational/machine learning methods used to monitor common motor PD symptoms. A sub-set of roughly 12,000 papers was reviewed that best characterized the machine learning and technology timelines that manifested from reviewing the literature. The technology used to monitor PD motor symptoms has advanced significantly in the past five decades. Early monitoring began with in-lab devices such as needle-based EMG, transitioned to in-lab accelerometers/gyroscopes, then to wearable accelerometers/gyroscopes, and finally to phone and mobile & web application-based in-home monitoring. Significant progress has also been made with respect to the use of machine learning algorithms to classify PD patients. Using data from different devices (e.g., video cameras, phone-based accelerometers), researchers have designed neural network and non-neural network-based machine learning algorithms to categorize PD patients across tremor, gait, bradykinesia, and dyskinesia. The five-decade co-evolution of technology and computational techniques used to monitor PD motor symptoms has driven significant progress that is enabling the shift from in-lab/clinic to in-home monitoring of PD symptoms.
Collapse
Affiliation(s)
- Anirudha S Chandrabhatla
- School of Medicine, University of Virginia Health Sciences Center, Charlottesville, VA, 22903, USA
| | - I Jonathan Pomeraniec
- Surgical Neurology Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
- Department of Neurosurgery, University of Virginia Health Sciences Center, Charlottesville, VA, 22903, USA.
| | - Alexander Ksendzovsky
- Department of Neurosurgery, University of Maryland Medical System, Baltimore, MD, 21201, USA
| |
Collapse
|
8
|
Su G, Lin B, Yin J, Luo W, Xu R, Xu J, Dong K. Detection of hypomimia in patients with Parkinson's disease via smile videos. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1307. [PMID: 34532444 PMCID: PMC8422154 DOI: 10.21037/atm-21-3457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/20/2021] [Indexed: 11/25/2022]
Abstract
Background Parkinson’s disease (PD) is a neurodegenerative disease characterized by the impairment of facial expression, known as hypomimia. Hypomimia has serious impacts on patients’ ability to communicate, and it is difficult to detect at early stages of the disease. Furthermore, due to bradykinesia or other reasons, it is inconvenient for PD patients to visit the hospital. Therefore, it is appealing to develop an auxiliary diagnostic method that remotely detects hypomimia. Methods We proposed an automatic detection system for Parkinson’s hypomimia based on facial expressions (DSPH-FE). DSPH-FE provides a convenient remote service for those who potentially suffer from hypomimia and only requires patients to input their facial videos. Specifically, patients can detect hypomimia through two aspects: geometric features and texture features. Geometric features focus on visually representing structures of facial muscles. Facial expression factors (FEFs) are used as the first metric to quantify the current activation state of the facial muscles. Facial expression change factors (FECFs) are subsequently used as the second metric to calculate the moving trajectories of the activation states in the videos. Geometric features primarily concentrate on spatial information, with little involvement of temporal information. Thus, the extended histogram of oriented gradients (HOG) algorithm is introduced. This algorithm can extract texture features within multiple continuous frames and incorporate the temporal information into the features. Finally, these features are applied to four machine learning algorithms to model the relationship between these features and hypomimia. Results The DSPH-FE detection system achieved the best performance when concatenating geometric features and texture features, resulting in a F1 score of 0.9997. The best F1 scores achieved with geometric features and texture features were 0.8286 and 0.9446, respectively. This indicated that both geometric features and texture features have an ability to predict hypomimia, and demonstrated that temporal information can boost the model performance. Thus, DSPH-FE is an effective supportive tool in the medical management of PD patients. Conclusions Comprehensive experiments demonstrated that proposed features fit well with real-world videos and are beneficial in the clinical diagnosis of hypomimia. In particular, hypomimia had a greater impact on eyes and mouths when patients are smiling.
Collapse
Affiliation(s)
- Ge Su
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Bo Lin
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Jianwei Yin
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Wei Luo
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Renjun Xu
- Center for Data Science, Zhejiang University, Hangzhou, China
| | - Jie Xu
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kexiong Dong
- Technical Department, Hangzhou Healink Technology Corporation Limited, Hangzhou, China
| |
Collapse
|
9
|
Barrachina-Fernández M, Maitín AM, Sánchez-Ávila C, Romero JP. Wearable Technology to Detect Motor Fluctuations in Parkinson's Disease Patients: Current State and Challenges. SENSORS (BASEL, SWITZERLAND) 2021; 21:4188. [PMID: 34207198 PMCID: PMC8234127 DOI: 10.3390/s21124188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 01/30/2023]
Abstract
Monitoring of motor symptom fluctuations in Parkinson's disease (PD) patients is currently performed through the subjective self-assessment of patients. Clinicians require reliable information about a fluctuation's occurrence to enable a precise treatment rescheduling and dosing adjustment. In this review, we analyzed the utilization of sensors for identifying motor fluctuations in PD patients and the application of machine learning techniques to detect fluctuations. The review process followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Ten studies were included between January 2010 and March 2021, and their main characteristics and results were assessed and documented. Five studies utilized daily activities to collect the data, four used concrete scenarios executing specific activities to gather the data, and only one utilized a combination of both situations. The accuracy for classification was 83.56-96.77%. In the studies evaluated, it was not possible to find a standard cleaning protocol for the signal captured, and there is significant heterogeneity in the models utilized and in the different features introduced in the models (using spatiotemporal characteristics, frequential characteristics, or both). The two most influential factors in the good performance of the classification problem are the type of features utilized and the type of model.
Collapse
Affiliation(s)
- Mercedes Barrachina-Fernández
- Programa en Ingeniería Biomédica (PhD), ETSI Telecomunicación, Universidad Politécnica de Madrid (UPM), Avenida Complutense, 30, 28040 Madrid, Spain;
| | - Ana María Maitín
- Centro de Estudios e Innovación en Gestión del Conocimiento (CEIEC), Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Spain;
| | - Carmen Sánchez-Ávila
- Department de Matemática Aplicada a las TICs, ETSI Telecomunicación, Universidad Politécnica de Madrid (UPM), Avenida Complutense, 30, 28040 Madrid, Spain
| | - Juan Pablo Romero
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Spain
- Brain Damage Unit, Hospital Beata María Ana, 28007 Madrid, Spain
| |
Collapse
|
10
|
Ghoraani B, Galvin JE, Jimenez-Shahed J. Point of view: Wearable systems for at-home monitoring of motor complications in Parkinson's disease should deliver clinically actionable information. Parkinsonism Relat Disord 2021; 84:35-39. [PMID: 33549914 PMCID: PMC8324321 DOI: 10.1016/j.parkreldis.2021.01.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/18/2020] [Accepted: 01/26/2021] [Indexed: 01/05/2023]
Affiliation(s)
- Behnaz Ghoraani
- Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, 33431, USA.
| | - James E Galvin
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami, Miami, FL, 33136, USA
| | | |
Collapse
|