1
|
Patel AN, Srinivasan K. Deep learning paradigms in lung cancer diagnosis: A methodological review, open challenges, and future directions. Phys Med 2025; 131:104914. [PMID: 39938402 DOI: 10.1016/j.ejmp.2025.104914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 12/19/2024] [Accepted: 01/30/2025] [Indexed: 02/14/2025] Open
Abstract
Lung cancer is the leading cause of global cancer-related deaths, which emphasizes the critical importance of early diagnosis in enhancing patient outcomes. Deep learning has demonstrated significant promise in lung cancer diagnosis, excelling in nodule detection, classification, and prognosis prediction. This methodological review comprehensively explores deep learning models' application in lung cancer diagnosis, uncovering their integration across various imaging modalities. Deep learning consistently achieves state-of-the-art performance, occasionally surpassing human expert accuracy. Notably, deep neural networks excel in detecting lung nodules, distinguishing between benign and malignant nodules, and predicting patient prognosis. They have also led to the development of computer-aided diagnosis systems, enhancing diagnostic accuracy for radiologists. This review follows the specified criteria for article selection outlined by PRISMA framework. Despite challenges such as data quality and interpretability limitations, this review emphasizes the potential of deep learning to significantly improve the precision and efficiency of lung cancer diagnosis, facilitating continued research efforts to overcome these obstacles and fully harness neural network's transformative impact in this field.
Collapse
Affiliation(s)
- Aryan Nikul Patel
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India.
| | - Kathiravan Srinivasan
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
2
|
Kulkarni C, Quraishi A, Raparthi M, Shabaz M, Khan MA, Varma RA, Keshta I, Soni M, Byeon H. Hybrid disease prediction approach leveraging digital twin and metaverse technologies for health consumer. BMC Med Inform Decis Mak 2024; 24:92. [PMID: 38575951 PMCID: PMC10996111 DOI: 10.1186/s12911-024-02495-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024] Open
Abstract
Emerging from the convergence of digital twin technology and the metaverse, consumer health (MCH) is witnessing a transformative shift. The amalgamation of bioinformatics with healthcare Big Data has ushered in a new era of disease prediction models that harness comprehensive medical data, enabling the anticipation of illnesses even before the onset of symptoms. In this model, deep neural networks stand out because they improve accuracy remarkably by increasing network depth and making weight changes using gradient descent. Nonetheless, traditional methods face their own set of challenges, including the issues of gradient instability and slow training. In this case, the Broad Learning System (BLS) stands out as a good alternative. It gets around the problems with gradient descent and lets you quickly rebuild a model through incremental learning. One problem with BLS is that it has trouble extracting complex features from complex medical data. This makes it less useful in a wide range of healthcare situations. In response to these challenges, we introduce DAE-BLS, a novel hybrid model that marries Denoising AutoEncoder (DAE) noise reduction with the efficiency of BLS. This hybrid approach excels in robust feature extraction, particularly within the intricate and multifaceted world of medical data. Validation using diverse datasets yields impressive results, with accuracies reaching as high as 98.50%. DAE-BLS's ability to rapidly adapt through incremental learning holds great promise for accurate and agile disease prediction, especially within the complex and dynamic healthcare scenarios of today.
Collapse
Affiliation(s)
- Chaitanya Kulkarni
- Department of Computer Engineering, Vidya Pratishthan's Kamalnayan Bajaj Institute of Engineering and Technology, Baramati, Pune, 413133, Maharashtra, India
| | - Aadam Quraishi
- M.D. Research, Intervention Treatment Institute, Houston, TX, USA
| | - Mohan Raparthi
- Software Engineer, Alphabet Life Science, Dallas, TX, 75063, USA
| | - Mohammad Shabaz
- Model Institute of Engineering and Technology, Jammu, J&K, India.
| | - Muhammad Attique Khan
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
| | - Raj A Varma
- Symbiosis Law School (SLS), Symbiosis International (Deemed University) (SIU), Vimannagar, Pune, Maharashtra, India
| | - Ismail Keshta
- Computer Science and Information Systems Department, College of Applied Sciences, AlMaarefa University, Riyadh, Saudi Arabia
| | - Mukesh Soni
- Dr D Y Patil Vidyapeeth, Dr. D. Y. Patil School of Science and Technology, Pune, 411033, India
| | - Haewon Byeon
- Department of Digital Anti-Aging Healthcare, Inje University, Gimhae, Republic of Korea, 50834
| |
Collapse
|
3
|
Pungitore S, Subbian V. Assessment of Prediction Tasks and Time Window Selection in Temporal Modeling of Electronic Health Record Data: a Systematic Review. JOURNAL OF HEALTHCARE INFORMATICS RESEARCH 2023; 7:313-331. [PMID: 37637723 PMCID: PMC10449760 DOI: 10.1007/s41666-023-00143-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 04/12/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023]
Abstract
Temporal electronic health record (EHR) data are often preferred for clinical prediction tasks because they offer more complete representations of a patient's pathophysiology than static data. A challenge when working with temporal EHR data is problem formulation, which includes defining the time windows of interest and the prediction task. Our objective was to conduct a systematic review that assessed the definition and reporting of concepts relevant to temporal clinical prediction tasks. We searched PubMed® and IEEE Xplore® databases for studies from January 1, 2010 applying machine learning models to EHR data for patient outcome prediction. Publications applying time-series methods were selected for further review. We identified 92 studies and summarized them by clinical context and definition and reporting of the prediction problem. For the time windows of interest, 12 studies did not discuss window lengths, 57 used a single set of window lengths, and 23 evaluated the relationship between window length and model performance. We also found that 72 studies had appropriate reporting of the prediction task. However, evaluation of prediction problem formulation for temporal EHR data was complicated by heterogeneity in assessing and reporting of these concepts. Even among studies modeling similar clinical outcomes, there were variations in terminology used to describe the prediction problem, rationale for window lengths, and determination of the outcome of interest. As temporal modeling using EHR data expands, minimal reporting standards should include time-series specific concerns to promote rigor and reproducibility in future studies and facilitate model implementation in clinical settings. Supplementary Information The online version contains supplementary material available at 10.1007/s41666-023-00143-4.
Collapse
Affiliation(s)
- Sarah Pungitore
- Program in Applied Mathematics, Department of Mathematics, 617 N Santa Rita Ave, Tucson, AZ 85721 USA
| | - Vignesh Subbian
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721-0020 USA
- Department of Systems and Industrial Engineering, The University of Arizona, Tucson, AZ 85721-0020 USA
| |
Collapse
|
4
|
Anjum M, Shahab S, Yu Y. Syndrome Pattern Recognition Method Using Sensed Patient Data for Neurodegenerative Disease Progression Identification. Diagnostics (Basel) 2023; 13:887. [PMID: 36900031 PMCID: PMC10000542 DOI: 10.3390/diagnostics13050887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Neurodegenerative diseases are a group of conditions that involve the progressive loss of function of neurons in the brain and spinal cord. These conditions can result in a wide range of symptoms, such as difficulty with movement, speech, and cognition. The causes of neurodegenerative diseases are poorly understood, but many factors are believed to contribute to the development of these conditions. The most important risk factors include ageing, genetics, abnormal medical conditions, toxins, and environmental exposures. A slow decline in visible cognitive functions characterises the progression of these diseases. If left unattended or unnoticed, disease progression can result in serious issues such as the cessation of motor function or even paralysis. Therefore, early recognition of neurodegenerative diseases is becoming increasingly important in modern healthcare. Many sophisticated artificial intelligence technologies are incorporated into modern healthcare systems for the early recognition of these diseases. This research article introduces a Syndrome-dependent Pattern Recognition Method for the early detection and progression monitoring of neurodegenerative diseases. The proposed method determines the variance between normal and abnormal intrinsic neural connectivity data. The observed data is combined with previous and healthy function examination data to identify the variance. In this combined analysis, deep recurrent learning is exploited by tuning the analysis layer based on variance suppressed by identifying normal and abnormal patterns in the combined analysis. This variance from different patterns is recurrently used to train the learning model for maximising of recognition accuracy. The proposed method achieves 16.77% high accuracy, 10.55% high precision, and 7.69% high pattern verification. It reduces the variance and verification time by 12.08% and 12.02%, respectively.
Collapse
Affiliation(s)
- Mohd Anjum
- Department of Computer Engineering, Aligarh Muslim University, Aligarh 202001, India
| | - Sana Shahab
- Department of Business Administration, College of Business Administration, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Yang Yu
- Centre for Infrastructure Engineering and Safety (CIES), University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
5
|
Anish TP, Joe Prathap PM. An efficient and low complex model for optimal RBM features with weighted score-based ensemble multi-disease prediction. Comput Methods Biomech Biomed Engin 2023; 26:350-372. [PMID: 36218238 DOI: 10.1080/10255842.2022.2129969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Multi-disease prediction is regarded as the capacity to simultaneously identify various diseases that are expected to be affected an individual at a certain period. These multiple diseases are seemed to be at various progression levels and need to be detected in the patient at the time of clinical visits. Diverse studies in the literature have included the predictive models for particular diseases yet, it is unable to notice humans with multiple diseases since humans are mostly suffered not only from a single disease but also from multiple diseases. Hence, this article aims to implement a novel multi-disease prediction model using an ensemble learning approach with deep features. The required data for the multi-disease prediction is collected from the standard datasets. Then, the collected data are given into the "Deep Belief Network (DBN)" approach, where the features are obtained from the RBM layers. These RBM features are tuned with the help of Deviation-based Hybrid Grasshopper Barnacles Mating Optimization (D-HGBMO) for improving the prediction performance. The optimized RBM features are considered in the ensemble learning model named Ensemble, in which the multi-disease prediction is performed with "Deep Neural Network (DNN), Extreme Learning Machine (ELM), and Long Short Term Memory." The predicted score from three classifiers is used in the optimized weighted score and thresholding-based final prediction using the same D-HGBMO for determining the accurate multi-disease prediction results. The experimental results show the effective performance of the proposed model by comparing it with the existing classifiers with the help of different quantitative measures.
Collapse
Affiliation(s)
- T P Anish
- Assistant Professor, Department of Computer Science and Engineering, R.M.K. College of Engineering and Technology, Puduvoyal, India
| | - P M Joe Prathap
- Professor, Department of Computer Science and Engineering, R.M.D. Engineering College, Kavaraipettai, India
| |
Collapse
|
6
|
Parveen H, Rizvi SWA, Shukla PK. Disease risk level prediction based on knowledge driven optimized deep ensemble framework. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.103991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Yang F, Zhang J, Chen W, Lai Y, Wang Y, Zou Q. DeepMPM: a mortality risk prediction model using longitudinal EHR data. BMC Bioinformatics 2022; 23:423. [PMID: 36241976 PMCID: PMC9561325 DOI: 10.1186/s12859-022-04975-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 09/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accurate precision approaches have far not been developed for modeling mortality risk in intensive care unit (ICU) patients. Conventional mortality risk prediction methods can hardly extract the information in longitudinal electronic medical records (EHRs) effectively, since they simply aggregate the heterogeneous variables in EHRs, ignoring the complex relationship and interactions between variables and the time dependence in longitudinal records. Recently deep learning approaches have been widely used in modeling longitudinal EHR data. However, most existing deep learning-based risk prediction approaches only use the information of a single disease, neglecting the interactions between multiple diseases and different conditions. RESULTS In this paper, we address this unmet need by leveraging disease and treatment information in EHRs to develop a mortality risk prediction model based on deep learning (DeepMPM). DeepMPM utilizes a two-level attention mechanism, i.e. visit-level and variable-level attention, to derive the representation of patient risk status from patient's multiple longitudinal medical records. Benefiting from using EHR of patients with multiple diseases and different conditions, DeepMPM can achieve state-of-the-art performances in mortality risk prediction. CONCLUSIONS Experiment results on MIMIC III database demonstrates that with the disease and treatment information DeepMPM can achieve a good performance in terms of Area Under ROC Curve (0.85). Moreover, DeepMPM can successfully model the complex interactions between diseases to achieve better representation learning of disease and treatment than other deep learning approaches, so as to improve the accuracy of mortality prediction. A case study also shows that DeepMPM offers the potential to provide users with insights into feature correlation in data as well as model behavior for each prediction.
Collapse
Affiliation(s)
- Fan Yang
- Shenzhen Research Institute of Xiamen University, Shenzhen, China. .,Department of Automation, Xiamen University, Xiamen, China.
| | - Jian Zhang
- Department of Automation, Xiamen University, Xiamen, China
| | - Wanyi Chen
- Department of Automation, Xiamen University, Xiamen, China
| | - Yongxuan Lai
- School of informatics/Shenzhen Research Institute, Xiamen University, Xiamen/Shenzhen, China.
| | - Ying Wang
- Department of Automation, Xiamen University, Xiamen, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
8
|
Prakaash AS, Sivakumar K, Surendiran B, Jagatheswari S, Kalaiarasi K. Design and Development of Modified Ensemble Learning with Weighted RBM Features for Enhanced Multi-disease Prediction Model. NEW GENERATION COMPUTING 2022; 40:1241-1279. [PMID: 36101778 PMCID: PMC9455943 DOI: 10.1007/s00354-022-00190-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/09/2022] [Indexed: 05/21/2023]
Abstract
In this computer world, huge data are generated in several fields. Statistics in the healthcare engineering provides data about many diseases and corresponding patient's information. These data help to evaluate a huge amount of data for identifying the unknown patterns in the diseases and are also utilized for predicting the disease. Hence, this work is to plan and implement a new computer-aided technique named modified Ensemble Learning with Weighted RBM Features (EL-WRBM). Data collection is an initial process, in which the data of various diseases are gathered from UCI repository and Kaggle. Then, the gathered data are pre-processed by missing data filling technique. Then, the pre-processed data are performed by deep belief network (DBN), in which the weighted features are extracted from the RBM regions. Then, the prediction is made by ensemble learning with classifiers, namely, support vector machine (SVM), recurrent neural network (RNN), and deep neural network (DNN), in which hyper-parameters are optimized by the adaptive spreading rate-based coronavirus herd immunity optimizer (ASR-CHIO). At the end, the simulation analysis reveals that the suggested model has implications to support doctor diagnoses.
Collapse
Affiliation(s)
- A. S. Prakaash
- Department of Mathematics, Panimalar Engineering College, Poonamallee, Chennai, 600 123 Tamilnadu India
| | - K. Sivakumar
- Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences(SIMATS), Thandalam, Chennai, 602 105 Tamil Nadu India
| | - B. Surendiran
- Department of Computer Science and Engineering, National Institute of Technology karaikal, Karaikal, India
| | - S. Jagatheswari
- Department of Mathematics, Vellore Institute of Technology, Vellore, India
| | - K. Kalaiarasi
- PG and Research Department of Mathematics, Cauvery College for Women Autonomous Trichy, Trichy, India
| |
Collapse
|
9
|
A Novel Stacking-Based Deterministic Ensemble Model for Infectious Disease Prediction. MATHEMATICS 2022. [DOI: 10.3390/math10101714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Infectious Disease Prediction aims to anticipate the aspects of both seasonal epidemics and future pandemics. However, a single model will most likely not capture all the dataset’s patterns and qualities. Ensemble learning combines multiple models to obtain a single prediction that uses the qualities of each model. This study aims to develop a stacked ensemble model to accurately predict the future occurrences of infectious diseases viewed at some point in time as epidemics, namely, dengue, influenza, and tuberculosis. The main objective is to enhance the prediction performance of the proposed model by reducing prediction errors. Autoregressive integrated moving average, exponential smoothing, and neural network autoregression are applied to the disease dataset individually. The gradient boosting model combines the regress values of the above three statistical models to obtain an ensemble model. The results conclude that the forecasting precision of the proposed stacked ensemble model is better than that of the standard gradient boosting model. The ensemble model reduces the prediction errors, root-mean-square error, for the dengue, influenza, and tuberculosis dataset by approximately 30%, 24%, and 25%, respectively.
Collapse
|
10
|
Zhang S, Wang J, Pei L, Liu K, Gao Y, Fang H, Zhang R, Zhao L, Sun S, Wu J, Song B, Dai H, Li R, Xu Y. Interpretability analysis of one-year mortality prediction for stroke patients based on deep neural network. IEEE J Biomed Health Inform 2021; 26:1903-1910. [PMID: 34714758 DOI: 10.1109/jbhi.2021.3123657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Clinically, physicians collect the benchmark medical data to establish archives for a stroke patient and then add the follow up data regularly. It has great significance on prognosis prediction for stroke patients. In this paper, we present an interpretable deep learning model to predict the one-year mortality risk on stroke. We design sub-modules to reconstruct features from original clinical data that highlight the dissimilarity and temporality of different variables. The model consists of Bidirectional Long Short-Term Memory (Bi-LSTM), in which a novel correlation attention module is proposed that takes the correlation of variables into consideration. In experiments, datasets are collected clinically from the department of neurology in a local AAA hospital. It consists of 2,275 stroke patients hospitalized in the department of neurology from 2014 to 2016. Our model achieves a precision of 0.9414, a recall of 0.9502 and an F1-score of 0.9415. In addition, we provide the analysis of the interpretability by visualizations with reference to clinical professional guidelines.
Collapse
|