1
|
Zhao C, Guan Y, Yan S, Li J. Exploring the Promoter Generation and Prediction of Halomonas spp. Based on GAN and Multi-Model Fusion Methods. Int J Mol Sci 2024; 25:13137. [PMID: 39684846 DOI: 10.3390/ijms252313137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Promoters, as core elements in the regulation of gene expression, play a pivotal role in genetic engineering and synthetic biology. The accurate prediction and optimization of promoter strength are essential for advancing these fields. Here, we present the first promoter strength database tailored to Halomonas, an extremophilic microorganism, and propose a novel promoter design and prediction method based on generative adversarial networks (GANs) and multi-model fusion. The GAN model effectively learns the key features of Halomonas promoter sequences, such as the GC content and Moran's coefficients, to generate biologically plausible promoter sequences. To enhance prediction accuracy, we developed a multi-model fusion framework integrating deep learning and machine learning approaches. Deep learning models, incorporating BiLSTM and CNN architectures, capture k-mer and PSSM features, whereas machine learning models utilize engineered string and non-string features to construct comprehensive feature matrices for the multidimensional analysis and prediction of promoter strength. Using the proposed framework, newly generated promoters via mutation were predicted, and their functional validity was experimentally confirmed. The integration of multiple models significantly reduced the experimental validation space through an intersection-based strategy, achieving a notable improvement in top quantile prediction accuracy, particularly within the top five quantiles. The robustness and applicability of this model were further validated on diverse datasets, including test sets and out-of-sample promoters. This study not only introduces an innovative approach for promoter design and prediction in Halomonas but also lays a foundation for advancing industrial biotechnology. Additionally, the proposed strategy of GAN-based generation coupled with multi-model prediction demonstrates versatility, offering a valuable reference for promoter design and strength prediction in other extremophiles. Our findings highlight the promising synergy between artificial intelligence and synthetic biology, underscoring their profound academic and practical implications.
Collapse
Affiliation(s)
- Cuihuan Zhao
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuying Guan
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shuan Yan
- Department of Engineering Physics, Institute of Public Safety Research, Tsinghua University, Beijing 100084, China
| | - Jiahang Li
- School of Mathematical Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Peng B, Sun G, Fan Y. iProL: identifying DNA promoters from sequence information based on Longformer pre-trained model. BMC Bioinformatics 2024; 25:224. [PMID: 38918692 PMCID: PMC11201334 DOI: 10.1186/s12859-024-05849-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
Promoters are essential elements of DNA sequence, usually located in the immediate region of the gene transcription start sites, and play a critical role in the regulation of gene transcription. Its importance in molecular biology and genetics has attracted the research interest of researchers, and it has become a consensus to seek a computational method to efficiently identify promoters. Still, existing methods suffer from imbalanced recognition capabilities for positive and negative samples, and their recognition effect can still be further improved. We conducted research on E. coli promoters and proposed a more advanced prediction model, iProL, based on the Longformer pre-trained model in the field of natural language processing. iProL does not rely on prior biological knowledge but simply uses promoter DNA sequences as plain text to identify promoters. It also combines one-dimensional convolutional neural networks and bidirectional long short-term memory to extract both local and global features. Experimental results show that iProL has a more balanced and superior performance than currently published methods. Additionally, we constructed a novel independent test set following the previous specification and compared iProL with three existing methods on this independent test set.
Collapse
Affiliation(s)
- Binchao Peng
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Guicong Sun
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Yongxian Fan
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China.
| |
Collapse
|
3
|
Ao C, Jiao S, Wang Y, Yu L, Zou Q. Biological Sequence Classification: A Review on Data and General Methods. RESEARCH (WASHINGTON, D.C.) 2022; 2022:0011. [PMID: 39285948 PMCID: PMC11404319 DOI: 10.34133/research.0011] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/25/2022] [Indexed: 09/19/2024]
Abstract
With the rapid development of biotechnology, the number of biological sequences has grown exponentially. The continuous expansion of biological sequence data promotes the application of machine learning in biological sequences to construct predictive models for mining biological sequence information. There are many branches of biological sequence classification research. In this review, we mainly focus on the function and modification classification of biological sequences based on machine learning. Sequence-based prediction and analysis are the basic tasks to understand the biological functions of DNA, RNA, proteins, and peptides. However, there are hundreds of classification models developed for biological sequences, and the quite varied specific methods seem dizzying at first glance. Here, we aim to establish a long-term support website (http://lab.malab.cn/~acy/BioseqData/home.html), which provides readers with detailed information on the classification method and download links to relevant datasets. We briefly introduce the steps to build an effective model framework for biological sequence data. In addition, a brief introduction to single-cell sequencing data analysis methods and applications in biology is also included. Finally, we discuss the current challenges and future perspectives of biological sequence classification research.
Collapse
Affiliation(s)
- Chunyan Ao
- School of Computer Science and Technology, Xidian University, Xi'an, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Shihu Jiao
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Yansu Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Liang Yu
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Li P, Tiwari P, Xu J, Qian Y, Ai C, Ding Y, Guo F. Sparse regularized joint projection model for identifying associations of non-coding RNAs and human diseases. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.110044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Amilpur S, Bhukya R. A sequence-based two-layer predictor for identifying enhancers and their strength through enhanced feature extraction. J Bioinform Comput Biol 2022; 20:2250005. [PMID: 35264081 DOI: 10.1142/s0219720022500056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Enhancers are short regulatory DNA fragments that are bound with proteins called activators. They are free-bound and distant elements, which play a vital role in controlling gene expression. It is challenging to identify enhancers and their strength due to their dynamic nature. Although some machine learning methods exist to accelerate identification process, their prediction accuracy and efficiency will need more improvement. In this regard, we propose a two-layer prediction model with enhanced feature extraction strategy which does feature combination from improved position-specific amino acid propensity (PSTKNC) method along with Enhanced Nucleic Acid Composition (ENAC) and Composition of k-spaced Nucleic Acid Pairs (CKSNAP). The feature sets from all three feature extraction approaches were concatenated and then sent through a simple artificial neural network (ANN) to accurately identify enhancers in the first layer and their strength in the second layer. Experiments are conducted on benchmark chromatin nine cell lines dataset. A 10-fold cross validation method is employed to evaluate model's performance. The results show that the proposed model gives an outstanding performance with 94.50%, 0.8903 of accuracy and Matthew's correlation coefficient (MCC) in predicting enhancers and fairly does well with independent test also when compared with all other existing methods.
Collapse
Affiliation(s)
- Santhosh Amilpur
- Computer Science and Engineering, National Institute of Technology Warangal, Warangal Telangana 506004, India
| | - Raju Bhukya
- Computer Science and Engineering, National Institute of Technology Warangal, Warangal Telangana 506004, India
| |
Collapse
|
6
|
Zhai Y, Zhang J, Zhang T, Gong Y, Zhang Z, Zhang D, Zhao Y. AOPM: Application of Antioxidant Protein Classification Model in Predicting the Composition of Antioxidant Drugs. Front Pharmacol 2022; 12:818115. [PMID: 35115948 PMCID: PMC8803896 DOI: 10.3389/fphar.2021.818115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
Antioxidant proteins can not only balance the oxidative stress in the body, but are also an important component of antioxidant drugs. Accurate identification of antioxidant proteins is essential to help humans fight diseases and develop new drugs. In this paper, we developed a friendly method AOPM to identify antioxidant proteins. 188D and the Composition of k-spaced Amino Acid Pairs were adopted as the feature extraction method. In addition, the Max-Relevance-Max-Distance algorithm (MRMD) and random forest were the feature selection and classifier, respectively. We used 5-folds cross-validation and independent test dataset to evaluate our model. On the test dataset, AOPM presented a higher performance compared with the state-of-the-art methods. The sensitivity, specificity, accuracy, Matthew’s Correlation Coefficient and an Area Under the Curve reached 87.3, 94.2, 92.0%, 0.815 and 0.972, respectively. In addition, AOPM still has excellent performance in predicting the catalytic enzymes of antioxidant drugs. This work proved the feasibility of virtual drug screening based on sequence information and provided new ideas and solutions for drug development.
Collapse
Affiliation(s)
- Yixiao Zhai
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Jingyu Zhang
- Department of Neurology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianjiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Yue Gong
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Zixiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Dandan Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Dandan Zhang, ; Yuming Zhao,
| | - Yuming Zhao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
- *Correspondence: Dandan Zhang, ; Yuming Zhao,
| |
Collapse
|
7
|
iPTT(2 L)-CNN: A Two-Layer Predictor for Identifying Promoters and Their Types in Plant Genomes by Convolutional Neural Network. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6636350. [PMID: 33488763 PMCID: PMC7803414 DOI: 10.1155/2021/6636350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022]
Abstract
A promoter is a short DNA sequence near to the start codon, responsible for initiating transcription of a specific gene in genome. The accurate recognition of promoters has great significance for a better understanding of the transcriptional regulation. Because of their importance in the process of biological transcriptional regulation, there is an urgent need to develop in silico tools to identify promoters and their types timely and accurately. A number of prediction methods had been developed in this regard; however, almost all of them were merely used for identifying promoters and their strength or sigma types. Owing to that TATA box region in TATA promoter that influences posttranscriptional processes, in the current study, we developed a two-layer predictor called iPTT(2L)-CNN by using the convolutional neural network (CNN) for identifying TATA and TATA-less promoters. The first layer can be used to identify a given DNA sequence as a promoter or nonpromoter. The second layer is used to identify whether the recognized promoter is TATA promoter or not. The 5-fold crossvalidation and independent testing results demonstrate that the constructed predictor is promising for identifying promoter and classifying TATA and TATA-less promoter. Furthermore, to make it easier for most experimental scientists get the results they need, a user-friendly web server has been established at http://www.jci-bioinfo.cn/iPPT(2L)-CNN.
Collapse
|