1
|
Alhussein G, Alkhodari M, Ziogas I, Lamprou C, Khandoker AH, Hadjileontiadis LJ. Exploring emotional climate recognition in peer conversations through bispectral features and affect dynamics. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 265:108695. [PMID: 40138858 DOI: 10.1016/j.cmpb.2025.108695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/13/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND AND OBJECTIVE Emotion recognition in conversations using artificial intelligence (AI) has gained significant attention due to its potential to provide insights into human social behavior. This study extends AI-based emotion recognition to the recognition of emotional climate (EC), which reflects the joint emotional atmosphere dynamically created and perceived by peers during conversations. The objective is to propose and evaluate a novel approach, MLBispec, for EC recognition using speech signals. METHODS The MLBispec approach involves time-windowed bispectral analysis of conversational speech signals to extract features related to nonlinear harmonic interactions. These features are combined with peers' affect dynamics, derived from emotion labeling for the same time windows, to form an extended feature set. The combined feature set is then fed into machine learning (ML) classifiers. MLBispec was evaluated on the IEMOCAP, K-EmoCon, and SEWA open-access datasets, which provide 2D emotion annotations (arousal and valence) divided into low/high classes. Additionally, cross-lingual experiments were conducted to test the framework's generalization across languages. RESULTS Experimental results demonstrated that MLBispec outperformed previous deep learning-based state-of-the-art approaches in speech emotion recognition, achieving accuracies of 82.6% for arousal and 75.4% for valence. The framework's incorporation of both qualitative and quantitative EC measurements enhanced its ability to characterize the dynamic speech representations of conversational affective structures. Cross-lingual experiments further validated the robustness of MLBispec. CONCLUSIONS The findings highlight the effectiveness of MLBispec in objectively recognizing peers' EC during conversations, setting a new standard for practical emotionally-aware applications. These include point-of-care healthcare, human-computer interfaces (HCI), and large-language models (LLMs). By enabling dynamic and reliable EC recognition, MLBispec paves the way for advancements in emotionally intelligent systems.
Collapse
Affiliation(s)
- Ghada Alhussein
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
| | - Mohanad Alkhodari
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ioannis Ziogas
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Charalampos Lamprou
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ahsan H Khandoker
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Leontios J Hadjileontiadis
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Department of Electrical & Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
2
|
Establishing an Intelligent Emotion Analysis System for Long-Term Care Application Based on LabVIEW. SUSTAINABILITY 2022. [DOI: 10.3390/su14148932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, the authors implemented an intelligent long-term care system based on deep learning techniques, using an AI model that can be integrated with the Lab’s Virtual Instrumentation Engineering Workbench (LabVIEW) application for sentiment analysis. The input data collected is a database of numerous facial features and environmental variables that have been processed and analyzed; the output decisions are the corresponding controls for sentiment analysis and prediction. Convolutional neural network (CNN) is used to deal with the complex process of deep learning. After the convolutional layer simplifies the processing of the image matrix, the results are computed by the fully connected layer. Furthermore, the Multilayer Perceptron (MLP) model embedded in LabVIEW is constructed for numerical transformation, analysis, and predictive control; it predicts the corresponding control of emotional and environmental variables. Moreover, LabVIEW is used to design sensor components, data displays, and control interfaces. Remote sensing and control is achieved by using LabVIEW’s built-in web publishing tools.
Collapse
|
3
|
Heidari A, Jafari Navimipour N, Unal M, Toumaj S. Machine learning applications for COVID-19 outbreak management. Neural Comput Appl 2022; 34:15313-15348. [PMID: 35702664 PMCID: PMC9186489 DOI: 10.1007/s00521-022-07424-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 05/10/2022] [Indexed: 12/29/2022]
Abstract
Recently, the COVID-19 epidemic has resulted in millions of deaths and has impacted practically every area of human life. Several machine learning (ML) approaches are employed in the medical field in many applications, including detecting and monitoring patients, notably in COVID-19 management. Different medical imaging systems, such as computed tomography (CT) and X-ray, offer ML an excellent platform for combating the pandemic. Because of this need, a significant quantity of study has been carried out; thus, in this work, we employed a systematic literature review (SLR) to cover all aspects of outcomes from related papers. Imaging methods, survival analysis, forecasting, economic and geographical issues, monitoring methods, medication development, and hybrid apps are the seven key uses of applications employed in the COVID-19 pandemic. Conventional neural networks (CNNs), long short-term memory networks (LSTM), recurrent neural networks (RNNs), generative adversarial networks (GANs), autoencoders, random forest, and other ML techniques are frequently used in such scenarios. Next, cutting-edge applications related to ML techniques for pandemic medical issues are discussed. Various problems and challenges linked with ML applications for this pandemic were reviewed. It is expected that additional research will be conducted in the upcoming to limit the spread and catastrophe management. According to the data, most papers are evaluated mainly on characteristics such as flexibility and accuracy, while other factors such as safety are overlooked. Also, Keras was the most often used library in the research studied, accounting for 24.4 percent of the time. Furthermore, medical imaging systems are employed for diagnostic reasons in 20.4 percent of applications.
Collapse
Affiliation(s)
- Arash Heidari
- Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Department of Computer Engineering, Shabestar Branch, Islamic Azad University, Shabestar, Iran
| | | | - Mehmet Unal
- Department of Computer Engineering, Nisantasi University, Istanbul, Turkey
| | - Shiva Toumaj
- Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
4
|
Nsaif MK, Mahdi BA, Bahar Al-Mayouf YR, Mahdi OA, Aljaaf AJ, Khan S. An online COVID-19 self-assessment framework supported by IoMT technology. JOURNAL OF INTELLIGENT SYSTEMS 2021. [DOI: 10.1515/jisys-2021-0048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abstract
As COVID-19 pandemic continued to propagate, millions of lives are currently at risk especially elderly, people with chronic conditions and pregnant women. Iraq is one of the countries affected by the COVID-19 pandemic. Currently, in Iraq, there is a need for a self-assessment tool to be available in hand for people with COVID-19 concerns. Such a tool would guide people, after an automated assessment, to the right decision such as seeking medical advice, self-isolate, or testing for COVID-19. This study proposes an online COVID-19 self-assessment tool supported by the internet of medical things (IoMT) technology as a means to fight this pandemic and mitigate the burden on our nation’s healthcare system. Advances in IoMT technology allow us to connect all medical tools, medical databases, and devices via the internet in one collaborative network, which conveys real-time data integration and analysis. Our IoMT framework-driven COVID-19 self-assessment tool will capture signs and symptoms through multiple probing questions, storing the data to our COVID-19 patient database, then analyze the data to determine whether a person needs to be tested for COVID-19 or other actions may require to be taken. Further to this, collected data can be integrated and analyzed collaboratively for developing a national health policy and help to manage healthcare resources more efficiently. The IoMT framework-driven online COVID-19 self-assessment tool has a big potential to prevent our healthcare system from being overwhelmed using real-time data collection, COVID-19 databases, analysis, and management of people with COVID-19 concerns, plus providing proper guidance and course of action.
Collapse
Affiliation(s)
- Mohammed Kamal Nsaif
- Department of Computer Sciences, College of Education for Pure Sciences-Ibn Al-Haitham, University of Baghdad , Baghdad , Iraq
| | - Bilal Adil Mahdi
- Ministry of Education, General Directorate of Education Al-Kharkh/Al-Awala , Baghdad , Iraq
| | - Yusor Rafid Bahar Al-Mayouf
- Department of Computer Sciences, College of Education for Pure Sciences-Ibn Al-Haitham, University of Baghdad , Baghdad , Iraq
| | - Omar Adil Mahdi
- Department of Computer Sciences, College of Education for Pure Sciences-Ibn Al-Haitham, University of Baghdad , Baghdad , Iraq
| | | | - Suleman Khan
- Department of Computer and Information Sciences, Northumbria University , Newcastle upon Tyne NE1 8ST , United Kingdom
| |
Collapse
|
5
|
Umair M, Cheema MA, Cheema O, Li H, Lu H. Impact of COVID-19 on IoT Adoption in Healthcare, Smart Homes, Smart Buildings, Smart Cities, Transportation and Industrial IoT. SENSORS (BASEL, SWITZERLAND) 2021; 21:3838. [PMID: 34206120 PMCID: PMC8199516 DOI: 10.3390/s21113838] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022]
Abstract
COVID-19 has disrupted normal life and has enforced a substantial change in the policies, priorities and activities of individuals, organisations and governments. These changes are proving to be a catalyst for technology and innovation. In this paper, we discuss the pandemic's potential impact on the adoption of the Internet of Things (IoT) in various broad sectors, namely healthcare, smart homes, smart buildings, smart cities, transportation and industrial IoT. Our perspective and forecast of this impact on IoT adoption is based on a thorough research literature review, a careful examination of reports from leading consulting firms and interactions with several industry experts. For each of these sectors, we also provide the details of notable IoT initiatives taken in the wake of COVID-19. We also highlight the challenges that need to be addressed and important research directions that will facilitate accelerated IoT adoption.
Collapse
Affiliation(s)
- Muhammad Umair
- Department of Electrical, Electronics and Telecommunication Engineering, New Campus, University of Engineering and Technology, Lahore, Punjab 54890, Pakistan;
| | - Muhammad Aamir Cheema
- Faculty of Information Technology, Monash University, Wellington Rd, Clayton, VIC 3800, Australia
| | - Omer Cheema
- IoT Wi-Fi Business Unit, Dialog Semiconductor, Green Park Reading RG2 6GP, UK;
| | - Huan Li
- Department of Computer Science, Aalborg University, Fredrik Bajers Vej 7K, 9220 Aalborg Øst, Denmark;
| | - Hua Lu
- Department of People and Technology, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark;
| |
Collapse
|