1
|
Guliy OI, Karavaeva OA, Smirnov AV, Eremin SA, Bunin VD. Optical Sensors for Bacterial Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:9391. [PMID: 38067765 PMCID: PMC10708710 DOI: 10.3390/s23239391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Analytical devices for bacterial detection are an integral part of modern laboratory medicine, as they permit the early diagnosis of diseases and their timely treatment. Therefore, special attention is directed to the development of and improvements in monitoring and diagnostic methods, including biosensor-based ones. A promising direction in the development of bacterial detection methods is optical sensor systems based on colorimetric and fluorescence techniques, the surface plasmon resonance, and the measurement of orientational effects. This review shows the detecting capabilities of these systems and the promise of electro-optical analysis for bacterial detection. It also discusses the advantages and disadvantages of optical sensor systems and the prospects for their further improvement.
Collapse
Affiliation(s)
- Olga I. Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms—Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Saratov 410049, Russia;
| | - Olga A. Karavaeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms—Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Saratov 410049, Russia;
| | - Andrey V. Smirnov
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow 125009, Russia;
| | - Sergei A. Eremin
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991, Russia;
| | | |
Collapse
|
2
|
Kraft FA, Harwardt K, Schardt J, Nowotka D, Gerken M. Suppressing the mechanochromism of flexible photonic crystals. OPTICS EXPRESS 2023; 31:6281-6295. [PMID: 36823888 DOI: 10.1364/oe.477189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Photonic crystal slabs (PCS) are a promising platform for optical biosensing. Yet, flexible applications based on PCS for biosensing have been limited, as the mechanical properties influence the optical ones. Here, we show the suppression of the mechanochromism effect for flexible PCS. We obtained flexible photonic crystal slabs by sputtering of a dielectric 100 nm Nb2O5 high refractive index layer onto a flexible nanostructured polydimethylsiloxane (PDMS) substrate with 370 nm grating period. The PCS exhibit a guided mode resonance at around 650 nm. We demonstrate that these flexible photonic crystal slabs show less than 0.5 nm resonance shift for 4% strain and call them stabilized PCS (sPCS). We compare this to a resonance shift of ∼21 nm for ∼4% strain of a flexible photonic crystal with a flexible nanoparticle high index layer (mechanochromatic PCS, mPCS). This high resonance shift is expected from the Bragg equations, where 4% grating period change correspond to approximately 4% change of the resonance wavelength (i.e., ∼26 nm at a resonance wavelength of 650 nm), if changes in the mode effective refractive index are neglected. In a stretch series we obtain color-to-strain dependencies of 4.79 nm/% strain for mPCS and 0.11 nm/% strain for our stabilized sPCS. We analyze the suppression of the mechanochromism with detailed microscopy results. We observe that fissures and fractures form in the rigid waveguiding layer of the sPCS upon mechanical stress. An algorithm based on Holistically-Nested Edge Detection (HED) is used for automated counting of cracks. Rigid photonic crystal cells with sizes on the order of 10 µm to 100 µm are formed that explain the stable optical properties. Even more stable optical properties with less than 0.03 nm wavelength shift per 1% strain are demonstrated for sPCS with an additional dielectric 100 nm SiO2 low index layer beneath the Nb2O5 waveguide layer decoupling the waveguide further from the flexible PDMS substrate.
Collapse
|
3
|
Dielectric nanohole array metasurface for high-resolution near-field sensing and imaging. Nat Commun 2021; 12:3293. [PMID: 34078903 PMCID: PMC8172834 DOI: 10.1038/s41467-021-23357-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Dielectric metasurfaces support resonances that are widely explored both for far-field wavefront shaping and for near-field sensing and imaging. Their design explores the interplay between localised and extended resonances, with a typical trade-off between Q-factor and light localisation; high Q-factors are desirable for refractive index sensing while localisation is desirable for imaging resolution. Here, we show that a dielectric metasurface consisting of a nanohole array in amorphous silicon provides a favourable trade-off between these requirements. We have designed and realised the metasurface to support two optical modes both with sharp Fano resonances that exhibit relatively high Q-factors and strong spatial confinement, thereby concurrently optimizing the device for both imaging and biochemical sensing. For the sensing application, we demonstrate a limit of detection (LOD) as low as 1 pg/ml for Immunoglobulin G (IgG); for resonant imaging, we demonstrate a spatial resolution below 1 µm and clearly resolve individual E. coli bacteria. The combined low LOD and high spatial resolution opens new opportunities for extending cellular studies into the realm of microbiology, e.g. for studying antimicrobial susceptibility. Dielectric metasurfaces have different Q-factor and light localisation requirements for sensing and imaging. Here, the authors present a dielectric metasurface, supporting two optical modes with sharp Fano resonances for high Q-factors and strong spatial confinement, allowing both sensing and imaging.
Collapse
|
4
|
Lee HS, Kwak JY, Seong TY, Hwang GW, Kim WM, Kim I, Lee KS. Optimization of tunable guided-mode resonance filter based on refractive index modulation of graphene. Sci Rep 2019; 9:19951. [PMID: 31882593 PMCID: PMC6934881 DOI: 10.1038/s41598-019-56194-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/05/2019] [Indexed: 11/09/2022] Open
Abstract
To fabricate a tunable optical filter with a fast response in the near infrared region, a tunable guided-mode resonance (GMR) filter using graphene was proposed and its performance was optimized. In this study, a rigorous coupled wave analysis method was employed to systematically investigate the effects of geometrical configuration of graphene-integrated GMR filters and the optical properties of constituent materials including graphene on their spectral response in terms of tunability and extinction ratio. It was found that as the graphene is located close to the waveguide and the evanescent-field strength at the interface increases, the GMR filter exhibits better tunability. The bandwidth of the filter could be drastically reduced by adopting a low-index contrast grating layer, so that the extinction ratio of an optical signal could be greatly improved from 0.91 dB to 27.99 dB as the index contrast decreased from 0.99 to 0.47, respectively. Furthermore, new practical device designs, that is easy to fabricate and effectively implement the electric-field doping of graphene at low gate voltage, were also suggested and theoretically validated. These results demonstrate not only the excellent potential of a graphene-based tunable GMR filter but also provide practical design guidelines for optimizing the device performance.
Collapse
Affiliation(s)
- Hwa-Seub Lee
- Center for Electronic Materials, Korea Institute of Science and Technology, Seoul, 02792, Korea.,Department of Materials Science and Engineering, Korea University, Seoul, 02841, Korea
| | - Joon Young Kwak
- Center for Electronic Materials, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Tae-Yeon Seong
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Korea
| | - Gyu Weon Hwang
- Center for Electronic Materials, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Won Mok Kim
- Center for Electronic Materials, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Inho Kim
- Center for Electronic Materials, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Kyeong-Seok Lee
- Center for Electronic Materials, Korea Institute of Science and Technology, Seoul, 02792, Korea. .,Department of Nanomaterials Science and Engineering, Korea University of Science and Technology, Daejeon, 34113, Korea.
| |
Collapse
|
5
|
Hernandez AL, Dortu F, Veenstra T, Ciaurriz P, Casquel R, Cornago I, Horsten HV, Tellechea E, Maigler MV, Fernández F, Holgado M. Automated Chemical Sensing Unit Integration for Parallel Optical Interrogation. SENSORS 2019; 19:s19040878. [PMID: 30791592 PMCID: PMC6412770 DOI: 10.3390/s19040878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/14/2022]
Abstract
We report the integration of an automated chemical optical sensing unit for the parallel interrogation of 12 BICELLs in a sensing chip. The work was accomplished under the European Project Enviguard (FP7-OCEAN-2013-614057) with the aim of demonstrating an optical nano-biosensing unit for the in-situ detection of various chemical pollutants simultaneously in oceanic waters. In this context, we designed an optical sensing chip based on resonant nanopillars (R-NPs) transducers organized in a layout of twelve biophotonic sensing cells (BICELLs). The sensing chip is interrogated in reflection with a 12-channels optical spectrometer equipped with an embedded computer-on-chip performing image processing for the simultaneous acquisition and analysis (resonant mode fitting) of the 12 spectra. A microfluidic chip and an automated flow control system composed of four pumps and a multi-path micro-valve makes it possible to drive different complex protocols. A rack was designed ad-hoc for the integration of all the modules. As a proof of concept, fluids of different refractive index (RI) were flowed in the system in order to measure the time response (sensogram) of the R-NPs under optical reflectance, and assess the sensors’ bulk sensitivity (285.9 ± 16.4 nm/RIU) and Limit of Detection (LoD) (2.95 × 10−6 RIUS). The real-time response under continuous flow of a sensor chip based on R-NP is showed for the first time, obtaining 12 sensograms simultaneously, featuring the unit as a potential excellent multiplexed detection system. These results indicate the high potential of the developed chemical sensing unit to be used for in-situ, multiplex and automatic optical biosensing.
Collapse
Affiliation(s)
- Ana L Hernandez
- Centre for Biomedical Technology, Optics, Photonics and Biophotonics Laboratory, Campus Montegancedo, Universidad Politécnica de Madrid, 28223 Madrid, Spain.
| | - Fabian Dortu
- Multitel, Parc Initialis 2, Rue Pierre et Marie Curie, 7000 Mons, Belgium.
| | - Theo Veenstra
- LioniX International BV, Hengelosestraat 500, 7521AN Enschede, The Netherlands.
| | - Paula Ciaurriz
- Naitec, Polígono Mocholí, Plaza Cein, 4, 31110 Noain, Spain.
| | - Rafael Casquel
- Centre for Biomedical Technology, Optics, Photonics and Biophotonics Laboratory, Campus Montegancedo, Universidad Politécnica de Madrid, 28223 Madrid, Spain.
| | - Iñaki Cornago
- Naitec, Polígono Mocholí, Plaza Cein, 4, 31110 Noain, Spain.
| | - Hendrik V Horsten
- Multitel, Parc Initialis 2, Rue Pierre et Marie Curie, 7000 Mons, Belgium.
| | | | - María V Maigler
- Bio Optical Detection, Centro de empresas de la Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain.
| | | | - Miguel Holgado
- Centre for Biomedical Technology, Optics, Photonics and Biophotonics Laboratory, Campus Montegancedo, Universidad Politécnica de Madrid, 28223 Madrid, Spain.
| |
Collapse
|
6
|
Quantifying single-cell secretion in real time using resonant hyperspectral imaging. Proc Natl Acad Sci U S A 2018; 115:13204-13209. [PMID: 30530663 PMCID: PMC6310807 DOI: 10.1073/pnas.1814977115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cell communication is primarily regulated by secreted proteins, whose inhomogeneous secretion often indicates physiological disorder. Parallel monitoring of innate protein-secretion kinetics from individual cells is thus crucial to unravel systemic malfunctions. Here, we report a label-free, high-throughput method for parallel, in vitro, and real-time analysis of specific single-cell signaling using hyperspectral photonic crystal resonant technology. Heterogeneity in physiological thrombopoietin expression from individual HepG2 liver cells in response to platelet desialylation was quantified demonstrating how mapping real-time protein secretion can provide a simple, yet powerful approach for studying complex physiological systems regulating protein production at single-cell resolution.
Collapse
|
7
|
Juan-Colás J, Krauss TF. Multiparameter resonant imaging for studying cell interactions. LIGHT, SCIENCE & APPLICATIONS 2018; 7:45. [PMID: 30839608 PMCID: PMC6106986 DOI: 10.1038/s41377-018-0032-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 06/09/2023]
Affiliation(s)
- José Juan-Colás
- Department of Physics, The University of York, Heslignton, YO10 5DD UK
- Department of Electronic Engineering, The University of York, Heslignton, YO10 5DD UK
| | - Thomas F Krauss
- Department of Physics, The University of York, Heslignton, YO10 5DD UK
| |
Collapse
|
8
|
Juan-Colás J, Johnson S, Krauss TF. Dual-Mode Electro-Optical Techniques for Biosensing Applications: A Review. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2047. [PMID: 28880211 PMCID: PMC5620729 DOI: 10.3390/s17092047] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 12/24/2022]
Abstract
The monitoring of biomolecular interactions is a key requirement for the study of complex biological processes and the diagnosis of disease. Technologies that are capable of providing label-free, real-time insight into these interactions are of great value for the scientific and clinical communities. Greater understanding of biomolecular interactions alongside increased detection accuracy can be achieved using technology that can provide parallel information about multiple parameters of a single biomolecular process. For example, electro-optical techniques combine optical and electrochemical information to provide more accurate and detailed measurements that provide unique insights into molecular structure and function. Here, we present a comparison of the main methods for electro-optical biosensing, namely, electrochemical surface plasmon resonance (EC-SPR), electrochemical optical waveguide lightmode spectroscopy (EC-OWLS), and the recently reported silicon-based electrophotonic approach. The comparison considers different application spaces, such as the detection of low concentrations of biomolecules, integration, the tailoring of light-matter interaction for the understanding of biomolecular processes, and 2D imaging of biointeractions on a surface.
Collapse
Affiliation(s)
- José Juan-Colás
- Department of Physics, University of York, York YO10 5DD, UK.
- Department of Electronic Engineering, University of York, York YO10 5DD, UK.
| | - Steven Johnson
- Department of Electronic Engineering, University of York, York YO10 5DD, UK.
| | - Thomas F Krauss
- Department of Physics, University of York, York YO10 5DD, UK.
| |
Collapse
|
9
|
Chong KE, Orton HW, Staude I, Decker M, Miroshnichenko AE, Brener I, Kivshar YS, Neshev DN. Refractive index sensing with Fano resonances in silicon oligomers. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2016.0070. [PMID: 28220001 PMCID: PMC5321831 DOI: 10.1098/rsta.2016.0070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/05/2016] [Indexed: 05/27/2023]
Abstract
We demonstrate experimentally refractive index sensing with localized Fano resonances in silicon oligomers, consisting of six disks surrounding a central one of slightly different diameter. Owing to the low absorption and narrow Fano-resonant spectral features appearing as a result of the interference of the modes of the outer and the central disks, we demonstrate refractive index sensitivity of more than 150 nm RIU-1 with a figure of merit of 3.8.This article is part of the themed issue 'New horizons for nanophotonics'.
Collapse
Affiliation(s)
- Katie E Chong
- Nonlinear Physics Centre, Research School of Physics and Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Henry W Orton
- Nonlinear Physics Centre, Research School of Physics and Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Isabelle Staude
- Nonlinear Physics Centre, Research School of Physics and Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, 07745 Jena, Germany
| | - Manuel Decker
- Nonlinear Physics Centre, Research School of Physics and Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Andrey E Miroshnichenko
- Nonlinear Physics Centre, Research School of Physics and Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Igal Brener
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Yuri S Kivshar
- Nonlinear Physics Centre, Research School of Physics and Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Dragomir N Neshev
- Nonlinear Physics Centre, Research School of Physics and Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
10
|
Triggs GJ, Wang Y, Reardon CP, Fischer M, Evans GJO, Krauss TF. Chirped guided-mode resonance biosensor. OPTICA 2017; 4:229-234. [PMID: 31149627 PMCID: PMC6513287 DOI: 10.1364/optica.4.000229] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 05/21/2023]
Abstract
Advanced biomedical diagnostic technologies fulfill an important role in improving health and well-being in society. A large number of excellent technologies have already been introduced and have given rise to the "lab-on-a-chip" paradigm. Most of these technologies, however, require additional instrumentation for interfacing and readout, so they are often confined to the laboratory and are not suitable for use in the field or in wider clinical practice. Other technologies require a light coupling element, such as a grating coupler or a fiber coupler, which complicates packaging. Here, we introduce a novel biosensor based on a chirped guided-mode resonant grating. The chirped grating combines the sensing function with the readout function by translating spectral information into spatial information that is easily read out with a simple CMOS camera. We demonstrate a refractive index sensitivity of 137 nm/RIU and an extrapolated limit of detection of 267 pM for the specific binding of an immunoglobulin G antibody. The chirped guided-mode resonance approach introduces a new degree of freedom for sensing biomedical information that combines high sensitivity with autonomous operation. We estimate that the cost of components is U.S. $10 or less when mass manufactured, so the technology has the potential to truly transform point-of-care applications.
Collapse
Affiliation(s)
| | - Yue Wang
- Department of Physics, University of York, York YO10 5DD, UK
- Corresponding author:
| | | | | | | | | |
Collapse
|
11
|
High speed e-beam writing for large area photonic nanostructures - a choice of parameters. Sci Rep 2016; 6:32945. [PMID: 27633902 PMCID: PMC5025733 DOI: 10.1038/srep32945] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/17/2016] [Indexed: 02/05/2023] Open
Abstract
Photonic nanostructures are used for many optical systems and applications. However, some high-end applications require the use of electron-beam lithography (EBL) to generate such nanostructures. An important technological bottleneck is the exposure time of the EBL systems, which can exceed 24 hours per 1 cm2. Here, we have developed a method based on a target function to systematically increase the writing speed of EBL. As an example, we use as the target function the fidelity of the Fourier Transform spectra of nanostructures that are designed for thin film light trapping applications, and optimize the full parameter space of the lithography process. Finally, we are able to reduce the exposure time by a factor of 5.5 without loss of photonic performance. We show that the performances of the fastest written structures are identical to the original ones within experimental error. As the target function can be varied according to different purposes, the method is also applicable to guided mode resonant grating and many other areas. These findings contribute to the advancement of EBL and point towards making the technology more attractive for commercial applications.
Collapse
|
12
|
Abstract
The label-free detection of microbial cells attached to a surface is an active field of research. The field is driven by the need to understand and control the growth of biofilms in a number of applications, including basic research in natural environments, industrial facilities, and clinical devices, to name a few. Despite significant progress in the ability to monitor the growth of biofilms and related living cells, the sensitivity and selectivity of such sensors are still a challenge. We believe that among the many different technologies available for monitoring biofilm growth, optical techniques are the most promising, as they afford direct imaging and offer high sensitivity and specificity. Furthermore, as each technique offers different insights into the biofilm growth mechanism, our analysis allows us to provide an overview of the biological processes at play. In addition, we use a set of key parameters to compare state-of-the-art techniques in the field, including a critical assessment of each method, to identify the most promising types of sensors. We highlight the challenges that need to be overcome to improve the characteristics of current biofilm sensor technologies and indicate where further developments are required. In addition, we provide guidelines for selecting a suitable sensor for detecting microbial cells on a surface.
Collapse
|