1
|
Al-Beltagi M, Saeed NK, Bediwy AS, Bediwy EA, Elbeltagi R. Decoding the genetic landscape of autism: A comprehensive review. World J Clin Pediatr 2024; 13:98468. [PMID: 39350903 PMCID: PMC11438927 DOI: 10.5409/wjcp.v13.i3.98468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/30/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by heterogeneous symptoms and genetic underpinnings. Recent advancements in genetic and epigenetic research have provided insights into the intricate mechanisms contributing to ASD, influencing both diagnosis and therapeutic strategies. AIM To explore the genetic architecture of ASD, elucidate mechanistic insights into genetic mutations, and examine gene-environment interactions. METHODS A comprehensive systematic review was conducted, integrating findings from studies on genetic variations, epigenetic mechanisms (such as DNA methylation and histone modifications), and emerging technologies [including Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 and single-cell RNA sequencing]. Relevant articles were identified through systematic searches of databases such as PubMed and Google Scholar. RESULTS Genetic studies have identified numerous risk genes and mutations associated with ASD, yet many cases remain unexplained by known factors, suggesting undiscovered genetic components. Mechanistic insights into how these genetic mutations impact neural development and brain connectivity are still evolving. Epigenetic modifications, particularly DNA methylation and non-coding RNAs, also play significant roles in ASD pathogenesis. Emerging technologies like CRISPR-Cas9 and advanced bioinformatics are advancing our understanding by enabling precise genetic editing and analysis of complex genomic data. CONCLUSION Continued research into the genetic and epigenetic underpinnings of ASD is crucial for developing personalized and effective treatments. Collaborative efforts integrating multidisciplinary expertise and international collaborations are essential to address the complexity of ASD and translate genetic discoveries into clinical practice. Addressing unresolved questions and ethical considerations surrounding genetic research will pave the way for improved diagnostic tools and targeted therapies, ultimately enhancing outcomes for individuals affected by ASD.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Alghrabia, Tanta 31511, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Bahrain
- Medical Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Muharraq, Busaiteen 15503, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Alghrabia, Tanta 31527, Egypt
- Department of Pulmonology, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Eman A Bediwy
- Internal Medicine, Faculty of Medicine, Tanta University, Algharbia, Tanta 31527, Egypt
| | - Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland-Bahrain, Muharraq, Busiateen 15503, Bahrain
| |
Collapse
|
2
|
Ge YJ, Fu Y, Gong W, Cheng W, Yu JT. Genetic architecture of brain morphology and overlap with neuropsychiatric traits. Trends Genet 2024; 40:706-717. [PMID: 38702264 DOI: 10.1016/j.tig.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
Uncovering the genetic architectures of brain morphology offers valuable insights into brain development and disease. Genetic association studies of brain morphological phenotypes have discovered thousands of loci. However, interpretation of these loci presents a significant challenge. One potential solution is exploring the genetic overlap between brain morphology and disorders, which can improve our understanding of their complex relationships, ultimately aiding in clinical applications. In this review, we examine current evidence on the genetic associations between brain morphology and neuropsychiatric traits. We discuss the impact of these associations on the diagnosis, prediction, and treatment of neuropsychiatric diseases, along with suggestions for future research directions.
Collapse
Affiliation(s)
- Yi-Jun Ge
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Fu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Weikang Gong
- School of Data Science, Fudan University, Shanghai, China; Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 9DU, UK
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Chen J, Li X, Calhoun VD, Turner JA, van Erp TGM, Wang L, Andreassen OA, Agartz I, Westlye LT, Jönsson E, Ford JM, Mathalon DH, Macciardi F, O'Leary DS, Liu J, Ji S. Sparse deep neural networks on imaging genetics for schizophrenia case-control classification. Hum Brain Mapp 2021; 42:2556-2568. [PMID: 33724588 PMCID: PMC8090768 DOI: 10.1002/hbm.25387] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/20/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Deep learning methods hold strong promise for identifying biomarkers for clinical application. However, current approaches for psychiatric classification or prediction do not allow direct interpretation of original features. In the present study, we introduce a sparse deep neural network (DNN) approach to identify sparse and interpretable features for schizophrenia (SZ) case–control classification. An L0‐norm regularization is implemented on the input layer of the network for sparse feature selection, which can later be interpreted based on importance weights. We applied the proposed approach on a large multi‐study cohort with gray matter volume (GMV) and single nucleotide polymorphism (SNP) data for SZ classification. A total of 634 individuals served as training samples, and the classification model was evaluated for generalizability on three independent datasets of different scanning protocols (N = 394, 255, and 160, respectively). We examined the classification power of pure GMV features, as well as combined GMV and SNP features. Empirical experiments demonstrated that sparse DNN slightly outperformed independent component analysis + support vector machine (ICA + SVM) framework, and more effectively fused GMV and SNP features for SZ discrimination, with an average error rate of 28.98% on external data. The importance weights suggested that the DNN model prioritized to select frontal and superior temporal gyrus for SZ classification with high sparsity, with parietal regions further included with lower sparsity, echoing previous literature. The results validate the application of the proposed approach to SZ classification, and promise extended utility on other data modalities and traits which ultimately may result in clinically useful tools.
Collapse
Affiliation(s)
- Jiayu Chen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): (Georgia State University, Georgia Institute of Technology and Emory University), Atlanta, Georgia, USA
| | - Xiang Li
- Department of Computer Science, Georgia State University, Atlanta, Georgia, USA
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): (Georgia State University, Georgia Institute of Technology and Emory University), Atlanta, Georgia, USA.,Department of Computer Science, Georgia State University, Atlanta, Georgia, USA.,Psychology Department and Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Jessica A Turner
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): (Georgia State University, Georgia Institute of Technology and Emory University), Atlanta, Georgia, USA.,Psychology Department and Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Theo G M van Erp
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, California, USA.,Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California, USA
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, Illinois, USA
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo & Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo & Oslo University Hospital, Oslo, Norway.,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.,Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo & Oslo University Hospital, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway
| | - Erik Jönsson
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo & Oslo University Hospital, Oslo, Norway.,Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Judith M Ford
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA.,Veterans Affairs San Francisco Healthcare System, San Francisco, California, USA
| | - Daniel H Mathalon
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA.,Veterans Affairs San Francisco Healthcare System, San Francisco, California, USA
| | - Fabio Macciardi
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Daniel S O'Leary
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jingyu Liu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): (Georgia State University, Georgia Institute of Technology and Emory University), Atlanta, Georgia, USA.,Department of Computer Science, Georgia State University, Atlanta, Georgia, USA
| | - Shihao Ji
- Department of Computer Science, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Shen L, Thompson PM. Brain Imaging Genomics: Integrated Analysis and Machine Learning. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2020; 108:125-162. [PMID: 31902950 PMCID: PMC6941751 DOI: 10.1109/jproc.2019.2947272] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Brain imaging genomics is an emerging data science field, where integrated analysis of brain imaging and genomics data, often combined with other biomarker, clinical and environmental data, is performed to gain new insights into the phenotypic, genetic and molecular characteristics of the brain as well as their impact on normal and disordered brain function and behavior. It has enormous potential to contribute significantly to biomedical discoveries in brain science. Given the increasingly important role of statistical and machine learning in biomedicine and rapidly growing literature in brain imaging genomics, we provide an up-to-date and comprehensive review of statistical and machine learning methods for brain imaging genomics, as well as a practical discussion on method selection for various biomedical applications.
Collapse
Affiliation(s)
- Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90232, USA
| |
Collapse
|