1
|
Marmin A, Dufour N, Facca S, Catheline S, Chatelin S, Nahas A. Full-field noise-correlation elastography for in-plane mechanical anisotropy imaging. BIOMEDICAL OPTICS EXPRESS 2024; 15:2622-2635. [PMID: 38633096 PMCID: PMC11019699 DOI: 10.1364/boe.516166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/19/2024]
Abstract
Elastography contrast imaging has great potential for the detection and characterization of abnormalities in soft biological tissues to help physicians in diagnosis. Transient shear-waves elastography has notably shown promising results for a range of clinical applications. In biological soft tissues such as muscle, high mechanical anisotropy implies different stiffness estimations depending on the direction of the measurement. In this study, we propose the evolution of a noise-correlation elastography approach for in-plane anisotropy mapping. This method is shown to retrieve anisotropy from simulation images before being validated on agarose anisotropic tissue-mimicking phantoms, and the first results on in-vivo biological fibrous tissues are presented.
Collapse
Affiliation(s)
- Agathe Marmin
- Université de
Strasbourg, CNRS, ICube, UMR 7357, 67000 Strasbourg,
France
| | - Nina Dufour
- Université de
Strasbourg, CNRS, ICube, UMR 7357, 67000 Strasbourg,
France
| | - Sybille Facca
- Université de
Strasbourg, CNRS, ICube, UMR 7357, 67000 Strasbourg,
France
- Department of Hand Surgery, SOS hand,
University Hospital of Strasbourg, FMTS, 1
avenue Molière, 67000 Strasbourg, France
| | - Stefan Catheline
- LabTAU, Inserm, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France
| | - Simon Chatelin
- Université de
Strasbourg, CNRS, ICube, UMR 7357, 67000 Strasbourg,
France
- RoDIn, Inserm ERL1328, 1 place de l’Hôpital, 67000 Strasbourg, France
| | - Amir Nahas
- Université de
Strasbourg, CNRS, ICube, UMR 7357, 67000 Strasbourg,
France
| |
Collapse
|
2
|
Zaitsev VY, Sovetsky AA, Matveyev AL, Matveev LA, Shabanov D, Salamatova VY, Karavaikin PA, Vassilevski YV. Application of compression optical coherence elastography for characterization of human pericardium: A pilot study. JOURNAL OF BIOPHOTONICS 2023; 16:e202200253. [PMID: 36397665 DOI: 10.1002/jbio.202200253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/23/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The recent impressive progress in Compression Optical Coherence Elastography (C-OCE) demonstrated diverse biomedical applications, comprising ophthalmology, oncology, etc. High resolution of C-OCE enables spatially resolved characterization of elasticity of rather thin (thickness < 1 mm) samples, which previously was impossible. Besides Young's modulus, C-OCE enables obtaining of nonlinear stress-strain dependences for various tissues. Here, we report the first application of C-OCE to nondestructively characterize biomechanics of human pericardium, for which data of conventional tensile tests are very limited and controversial. C-OCE revealed pronounced differences among differently prepared pericardium samples. Ample understanding of the influence of chemo-mechanical treatment on pericardium biomechanics is very important because of rapidly growing usage of own patients' pericardium for replacement of aortic valve leaflets in cardio-surgery. The figure demonstrates differences in the tangent Young's modulus after glutaraldehyde-induced cross-linking for two pericardium samples. One sample was over-stretched during the preparation, which caused some damage to the tissue.
Collapse
Affiliation(s)
- Vladimir Y Zaitsev
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Alexander A Sovetsky
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Alexander L Matveyev
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Lev A Matveev
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Dmitry Shabanov
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Victoria Y Salamatova
- Sechenov University, Moscow, Russia
- Sirius University of Science and Technology, Sochi, Russia
| | | | - Yuri V Vassilevski
- Sechenov University, Moscow, Russia
- Sirius University of Science and Technology, Sochi, Russia
- Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Leartprapun N, Adie SG. Recent advances in optical elastography and emerging opportunities in the basic sciences and translational medicine [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:208-248. [PMID: 36698669 PMCID: PMC9842001 DOI: 10.1364/boe.468932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 05/28/2023]
Abstract
Optical elastography offers a rich body of imaging capabilities that can serve as a bridge between organ-level medical elastography and single-molecule biophysics. We review the methodologies and recent developments in optical coherence elastography, Brillouin microscopy, optical microrheology, and photoacoustic elastography. With an outlook toward maximizing the basic science and translational clinical impact of optical elastography technologies, we discuss potential ways that these techniques can integrate not only with each other, but also with supporting technologies and capabilities in other biomedical fields. By embracing cross-modality and cross-disciplinary interactions with these parallel fields, optical elastography can greatly increase its potential to drive new discoveries in the biomedical sciences as well as the development of novel biomechanics-based clinical diagnostics and therapeutics.
Collapse
Affiliation(s)
- Nichaluk Leartprapun
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
- Present affiliation: Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Steven G. Adie
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
4
|
Singh M, Zvietcovich F, Larin KV. Introduction to optical coherence elastography: tutorial. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2022; 39:418-430. [PMID: 35297425 PMCID: PMC10052825 DOI: 10.1364/josaa.444808] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/25/2022] [Indexed: 06/03/2023]
Abstract
Optical coherence elastography (OCE) has seen rapid growth since its introduction in 1998. The past few decades have seen tremendous advancements in the development of OCE technology and a wide range of applications, including the first clinical applications. This tutorial introduces the basics of solid mechanics, which form the foundation of all elastography methods. We then describe how OCE measurements of tissue motion can be used to quantify tissue biomechanical parameters. We also detail various types of excitation methods, imaging systems, acquisition schemes, and data processing algorithms and how various parameters associated with each step of OCE imaging can affect the final quantitation of biomechanical properties. Finally, we discuss the future of OCE, its potential, and the next steps required for OCE to become an established medical imaging technology.
Collapse
Affiliation(s)
- Manmohan Singh
- Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Fernando Zvietcovich
- Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
- Department of Engineering, Pontificia Universidad Catolica del Peru, San Miguel, Lima 15088, Peru
| | - Kirill V. Larin
- Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
5
|
Zvietcovich F, Larin KV. Wave-based optical coherence elastography: The 10-year perspective. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2022; 4:012007. [PMID: 35187403 PMCID: PMC8856668 DOI: 10.1088/2516-1091/ac4512] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
After 10 years of progress and innovation, optical coherence elastography (OCE) based on the propagation of mechanical waves has become one of the major and the most studied OCE branches, producing a fundamental impact in the quantitative and nondestructive biomechanical characterization of tissues. Preceding previous progress made in ultrasound and magnetic resonance elastography; wave-based OCE has pushed to the limit the advance of three major pillars: (1) implementation of novel wave excitation methods in tissues, (2) understanding new types of mechanical waves in complex boundary conditions by proposing advance analytical and numerical models, and (3) the development of novel estimators capable of retrieving quantitative 2D/3D biomechanical information of tissues. This remarkable progress promoted a major advance in answering basic science questions and the improvement of medical disease diagnosis and treatment monitoring in several types of tissues leading, ultimately, to the first attempts of clinical trials and translational research aiming to have wave-based OCE working in clinical environments. This paper summarizes the fundamental up-to-date principles and categories of wave-based OCE, revises the timeline and the state-of-the-art techniques and applications lying in those categories, and concludes with a discussion on the current challenges and future directions, including clinical translation research.
Collapse
Affiliation(s)
- Fernando Zvietcovich
- University of Houston, Biomedical Engineering, Houston, TX, United States, 77204
| | - Kirill V. Larin
- University of Houston, Biomedical Engineering, Houston, TX, United States, 77204,
| |
Collapse
|