1
|
Griffith JL, Cluff K, Downes GM, Eckerman B, Bhandari S, Loflin BE, Becker R, Alruwaili F, Mohammed N. Wearable Sensing System for NonInvasive Monitoring of Intracranial BioFluid Shifts in Aerospace Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:985. [PMID: 36679781 PMCID: PMC9860908 DOI: 10.3390/s23020985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/20/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
The alteration of the hydrostatic pressure gradient in the human body has been associated with changes in human physiology, including abnormal blood flow, syncope, and visual impairment. The focus of this study was to evaluate changes in the resonant frequency of a wearable electromagnetic resonant skin patch sensor during simulated physiological changes observed in aerospace applications. Simulated microgravity was induced in eight healthy human participants (n = 8), and the implementation of lower body negative pressure (LBNP) countermeasures was induced in four healthy human participants (n = 4). The average shift in resonant frequency was -13.76 ± 6.49 MHz for simulated microgravity with a shift in intracranial pressure (ICP) of 9.53 ± 1.32 mmHg, and a shift of 8.80 ± 5.2097 MHz for LBNP with a shift in ICP of approximately -5.83 ± 2.76 mmHg. The constructed regression model to explain the variance in shifts in ICP using the shifts in resonant frequency (R2 = 0.97) resulted in a root mean square error of 1.24. This work demonstrates a strong correlation between sensor signal response and shifts in ICP. Furthermore, this study establishes a foundation for future work integrating wearable sensors with alert systems and countermeasure recommendations for pilots and astronauts.
Collapse
Affiliation(s)
- Jacob L. Griffith
- Department of Biomedical Engineering, Wichita State University, Wichita, KS 67260, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Kim Cluff
- Department of Biomedical Engineering, Wichita State University, Wichita, KS 67260, USA
| | - Grant M. Downes
- Department of Biomedical Engineering, Wichita State University, Wichita, KS 67260, USA
- Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Brandon Eckerman
- Department of Biomedical Engineering, Wichita State University, Wichita, KS 67260, USA
| | - Subash Bhandari
- Department of Biomedical Engineering, Wichita State University, Wichita, KS 67260, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Benjamin E. Loflin
- Department of Biomedical Engineering, Wichita State University, Wichita, KS 67260, USA
- Department of Orthopaedic Surgery, Indiana University, Indianapolis, IN 46202, USA
| | - Ryan Becker
- Department of Biomedical Engineering, Wichita State University, Wichita, KS 67260, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Fayez Alruwaili
- Department of Biomedical Engineering, Wichita State University, Wichita, KS 67260, USA
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Noor Mohammed
- Department of Biomedical Engineering, Wichita State University, Wichita, KS 67260, USA
- Department of Electrical and Computer Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
2
|
Mohammed N, Cluff K, Sutton M, Villafana-Ibarra B, Loflin BE, Griffith JL, Becker R, Bhandari S, Alruwaili F, Desai J. A Flexible Near-Field Biosensor for Multisite Arterial Blood Flow Detection. SENSORS (BASEL, SWITZERLAND) 2022; 22:8389. [PMID: 36366092 PMCID: PMC9657423 DOI: 10.3390/s22218389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Modern wearable devices show promising results in terms of detecting vital bodily signs from the wrist. However, there remains a considerable need for a device that can conform to the human body's variable geometry to accurately detect those vital signs and to understand health better. Flexible radio frequency (RF) resonators are well poised to address this need by providing conformable bio-interfaces suitable for different anatomical locations. In this work, we develop a compact wearable RF biosensor that detects multisite hemodynamic events due to pulsatile blood flow through noninvasive tissue-electromagnetic (EM) field interaction. The sensor consists of a skin patch spiral resonator and a wearable transceiver. During resonance, the resonator establishes a strong capacitive coupling with layered dielectric tissues due to impedance matching. Therefore, any variation in the dielectric properties within the near-field of the coupled system will result in field perturbation. This perturbation also results in RF carrier modulation, transduced via a demodulator in the transceiver unit. The main elements of the transceiver consist of a direct digital synthesizer for RF carrier generation and a demodulator unit comprised of a resistive bridge coupled with an envelope detector, a filter, and an amplifier. In this work, we build and study the sensor at the radial artery, thorax, carotid artery, and supraorbital locations of a healthy human subject, which hold clinical significance in evaluating cardiovascular health. The carrier frequency is tuned at the resonance of the spiral resonator, which is 34.5 ± 1.5 MHz. The resulting transient waveforms from the demodulator indicate the presence of hemodynamic events, i.e., systolic upstroke, systolic peak, dicrotic notch, and diastolic downstroke. The preliminary results also confirm the sensor's ability to detect multisite blood flow events noninvasively on a single wearable platform.
Collapse
Affiliation(s)
- Noor Mohammed
- Department of Electrical and Computer Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Biomedical Engineering, Wichita State University, Wichita, KS 67260, USA
| | - Kim Cluff
- Department of Biomedical Engineering, Wichita State University, Wichita, KS 67260, USA
| | - Mark Sutton
- Department of Biomedical Engineering, Wichita State University, Wichita, KS 67260, USA
| | | | - Benjamin E. Loflin
- Department of Biomedical Engineering, Wichita State University, Wichita, KS 67260, USA
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jacob L. Griffith
- Department of Biomedical Engineering, Wichita State University, Wichita, KS 67260, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Ryan Becker
- Department of Biomedical Engineering, Wichita State University, Wichita, KS 67260, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Subash Bhandari
- Department of Biomedical Engineering, Wichita State University, Wichita, KS 67260, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Fayez Alruwaili
- Department of Biomedical Engineering, Wichita State University, Wichita, KS 67260, USA
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Jaydip Desai
- Department of Biomedical Engineering, Wichita State University, Wichita, KS 67260, USA
| |
Collapse
|
3
|
Rangaiah PKB, Mandal B, Avetisyan E, Chezhian AS, Augustine B, Perez MD, Augustine R. Preliminary Analysis of Burn Degree Using Non-invasive Microwave Spiral Resonator Sensor for Clinical Applications. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:859498. [PMID: 35479303 PMCID: PMC9037089 DOI: 10.3389/fmedt.2022.859498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/07/2022] [Indexed: 12/02/2022] Open
Abstract
The European “Senseburn” project aims to develop a smart, portable, non-invasive microwave early effective diagnostic tool to assess the depth(d) and degree of burn. The objective of the work is to design and develop a convenient non-invasive microwave sensor for the analysis of the burn degree on burnt human skin. The flexible and biocompatible microwave sensor is developed using a magnetically coupled loop probe with a spiral resonator (SR). The sensor is realized with precise knowledge of the lumped element characteristics (resistor (R), an inductor (L), and a capacitor (C) RLC parameters). The estimated electrical equivalent circuit technique relies on a rigorous method enabling a comprehensive characterization of the sensor (loop probe and SR). The microwave resonator sensor with high quality factor (Q) is simulated using a CST studio suite, AWR microwave office, and fabricated on the RO 3003 substrate with a standard thickness of 0.13 mm. The sensor is prepared based on the change in dielectric property variation in the burnt skin. The sensor can detect a range of permittivity variations (εr 3–38). The sensor is showing a good response in changing resonance frequency between 1.5 and 1.71 GHz for (εr 3 to 38). The sensor is encapsulated with PDMS for the biocompatible property. The dimension of the sensor element is length (L) = 39 mm, width (W) = 34 mm, and thickness (T) = 1.4 mm. The software algorithm is prepared to automate the process of burn analysis. The proposed electromagnetic (EM) resonator based sensor provides a non-invasive technique to assess burn degree by monitoring the changes in resonance frequency. Most of the results are based on numerical simulation. We propose the unique circuit set up and the sensor device based on the information generated from the simulation in this article. The clinical validation of the sensor will be in our future work, where we will understand closely the practical functioning of the sensor based on burn degrees. The senseburn system is designed to support doctors to gather vital info of the injuries wirelessly and hence provide efficient treatment for burn victims, thus saving lives.
Collapse
Affiliation(s)
- Pramod K. B. Rangaiah
- Ångström Laboratory, Department of Engineering Sciences, Microwaves in Medical Engineering Group, Solid State Electronics, Uppsala University, Uppsala, Sweden
| | - Bappaditya Mandal
- Ångström Laboratory, Department of Engineering Sciences, Microwaves in Medical Engineering Group, Solid State Electronics, Uppsala University, Uppsala, Sweden
| | - Erik Avetisyan
- Ångström Laboratory, Department of Engineering Sciences, Microwaves in Medical Engineering Group, Solid State Electronics, Uppsala University, Uppsala, Sweden
| | - Arvind Selvan Chezhian
- Ångström Laboratory, Department of Engineering Sciences, Microwaves in Medical Engineering Group, Solid State Electronics, Uppsala University, Uppsala, Sweden
| | - Bobins Augustine
- Ångström Laboratory, Department of Engineering Sciences, Microwaves in Medical Engineering Group, Solid State Electronics, Uppsala University, Uppsala, Sweden
- Ångström Laboratory, Division of Computer Systems, Department of Information Technology, Uppsala Networked Objects (UNO), Uppsala University, Uppsala, Sweden
| | - Mauricio David Perez
- Ångström Laboratory, Department of Engineering Sciences, Microwaves in Medical Engineering Group, Solid State Electronics, Uppsala University, Uppsala, Sweden
| | - Robin Augustine
- Ångström Laboratory, Department of Engineering Sciences, Microwaves in Medical Engineering Group, Solid State Electronics, Uppsala University, Uppsala, Sweden
- *Correspondence: Robin Augustine
| |
Collapse
|
4
|
Baghelani M, Abbasi Z, Daneshmand M, Light PE. Non-invasive Lactate Monitoring System Using Wearable Chipless Microwave Sensors with Enhanced Sensitivity and Zero Power Consumption. IEEE Trans Biomed Eng 2022; 69:3175-3182. [PMID: 35333709 DOI: 10.1109/tbme.2022.3162315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractMonitoring lactate levels is an established method for determining hyperlactatemia in critically ill patients and assessing aerobic fitness. It is a widely used gold-standard technique in both professional and serious amateur sports. Non-invasive real-time lactate monitoring offers significant advantages over the current technology of finger-prick blood sampling. Possible candidate technology for developing non-invasive real-time lactate monitoring should be highly sensitive, flexible, and capable of real-time monitoring of lactate levels in interstitial fluid or within specific working muscle groups depending on the type of sport. Herein we describe a planar, flexible, passive, chipless tag resonator that is electromagnetically coupled to a reader placed in proximity to the lactate sensor tag. The tag resonator is a thin metallic tracing that can be taped on the skin. The resonance frequency of the tag fluctuates proportionately with changing lactate concentrations in a solution mimicking human interstitial fluid with very high sensitivity. The spectrum of the tag is reflected in the spectrum of the reader, which is a planar microwave resonator designed at a different frequency. The reader could be embedded in a cellphone or an application-specific wearable device for data communication and processing. The tag can accurately and reproducibly measure lactate concentrations in the range of 1 to 10 mM, which is in the physiological range of lactate observed at rest and during intense physical activity. Furthermore, the chrematistics of this technology will allow monitoring of lactate in specific working muscle groups.
Collapse
|
5
|
Recent Advances in Wearable Optical Sensor Automation Powered by Battery versus Skin-like Battery-Free Devices for Personal Healthcare-A Review. NANOMATERIALS 2022; 12:nano12030334. [PMID: 35159679 PMCID: PMC8838083 DOI: 10.3390/nano12030334] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/11/2022]
Abstract
Currently, old-style personal Medicare techniques rely mostly on traditional methods, such as cumbersome tools and complicated processes, which can be time consuming and inconvenient in some circumstances. Furthermore, such old methods need the use of heavy equipment, blood draws, and traditional bench-top testing procedures. Invasive ways of acquiring test samples can potentially cause patient discomfort and anguish. Wearable sensors, on the other hand, may be attached to numerous body areas to capture diverse biochemical and physiological characteristics as a developing analytical tool. Physical, chemical, and biological data transferred via the skin are used to monitor health in various circumstances. Wearable sensors can assess the aberrant conditions of the physical or chemical components of the human body in real time, exposing the body state in time, thanks to unintrusive sampling and high accuracy. Most commercially available wearable gadgets are mechanically hard components attached to bands and worn on the wrist, with form factors ultimately constrained by the size and weight of the batteries required for the power supply. Basic physiological signals comprise a lot of health-related data. The estimation of critical physiological characteristics, such as pulse inconstancy or variability using photoplethysmography (PPG) and oxygen saturation in arterial blood using pulse oximetry, is possible by utilizing an analysis of the pulsatile component of the bloodstream. Wearable gadgets with “skin-like” qualities are a new type of automation that is only starting to make its way out of research labs and into pre-commercial prototypes. Flexible skin-like sensing devices have accomplished several functionalities previously inaccessible for typical sensing devices due to their deformability, lightness, portability, and flexibility. In this paper, we studied the recent advancement in battery-powered wearable sensors established on optical phenomena and skin-like battery-free sensors, which brings a breakthrough in wearable sensing automation.
Collapse
|
6
|
MAS: Standalone Microwave Resonator to Assess Muscle Quality. SENSORS 2021; 21:s21165485. [PMID: 34450927 PMCID: PMC8399157 DOI: 10.3390/s21165485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/31/2022]
Abstract
Microwave-based sensing for tissue analysis is recently gaining interest due to advantages such as non-ionizing radiation and non-invasiveness. We have developed a set of transmission sensors for microwave-based real-time sensing to quantify muscle mass and quality. In connection, we verified the sensors by 3D simulations, tested them in a laboratory on a homogeneous three-layer tissue model, and collected pilot clinical data in 20 patients and 25 healthy volunteers. This report focuses on initial sensor designs for the Muscle Analyzer System (MAS), their simulation, laboratory trials and clinical trials followed by developing three new sensors and their performance comparison. In the clinical studies, correlation studies were done to compare MAS performance with other clinical standards, specifically the skeletal muscle index, for muscle mass quantification. The results showed limited signal penetration depth for the Split Ring Resonator (SRR) sensor. New sensors were designed incorporating Substrate Integrated Waveguides (SIW) and a bandstop filter to overcome this problem. The sensors were validated through 3D simulations in which they showed increased penetration depth through tissue when compared to the SRR. The second-generation sensors offer higher penetration depth which will improve clinical data collection and validation. The bandstop filter is fabricated and studied in a group of volunteers, showing more reliable data that warrants further continuation of this development.
Collapse
|
7
|
Chen J, Li G, Liang H, Zhao S, Sun J, Qin M. An amplitude-based characteristic parameter extraction algorithm for cerebral edema detection based on electromagnetic induction. Biomed Eng Online 2021; 20:74. [PMID: 34344370 PMCID: PMC8335876 DOI: 10.1186/s12938-021-00913-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/26/2021] [Indexed: 11/10/2022] Open
Abstract
Background Cerebral edema is a common condition secondary to any type of neurological injury. The early diagnosis and monitoring of cerebral edema is of great importance to improve the prognosis. In this article, a flexible conformal electromagnetic two-coil sensor was employed as the electromagnetic induction sensor, associated with a vector network analyzer (VNA) for signal generation and receiving. Measurement of amplitude data over the frequency range of 1–100 MHz is conducted to evaluate the changes in cerebral edema. We proposed an Amplitude-based Characteristic Parameter Extraction (Ab-CPE) algorithm for multi-frequency characteristic analysis over the frequency range of 1–100 MHz and investigated its performance in electromagnetic induction-based cerebral edema detection and distinction of its acute/chronic phase. Fourteen rabbits were enrolled to establish cerebral edema model and the 24 h real-time monitoring experiments were carried out for algorithm verification. Results The proposed Ab-CPE algorithm was able to detect cerebral edema with a sensitivity of 94.1% and specificity of 95.4%. Also, in the early stage, it can detect cerebral edema with a sensitivity of 85.0% and specificity of 87.5%. Moreover, the Ab-CPE algorithm was able to distinguish between acute and chronic phase of cerebral edema with a sensitivity of 85.0% and specificity of 91.0%. Conclusion The proposed Ab-CPE algorithm is suitable for multi-frequency characteristic analysis. Combined with this algorithm, the electromagnetic induction method has an excellent performance on the detection and monitoring of cerebral edema.
Collapse
Affiliation(s)
- Jingbo Chen
- College of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China
| | - Gen Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China.
| | - Huayou Liang
- China Aerodynamics Research and Development Center Low Speed Aerodynamic Institute, Mianyang, Sichuan, China
| | - Shuanglin Zhao
- College of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Sun
- College of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China
| | - Mingxin Qin
- College of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
8
|
Al-Qatatsheh A, Morsi Y, Zavabeti A, Zolfagharian A, Salim N, Z. Kouzani A, Mosadegh B, Gharaie S. Blood Pressure Sensors: Materials, Fabrication Methods, Performance Evaluations and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4484. [PMID: 32796604 PMCID: PMC7474433 DOI: 10.3390/s20164484] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022]
Abstract
Advancements in materials science and fabrication techniques have contributed to the significant growing attention to a wide variety of sensors for digital healthcare. While the progress in this area is tremendously impressive, few wearable sensors with the capability of real-time blood pressure monitoring are approved for clinical use. One of the key obstacles in the further development of wearable sensors for medical applications is the lack of comprehensive technical evaluation of sensor materials against the expected clinical performance. Here, we present an extensive review and critical analysis of various materials applied in the design and fabrication of wearable sensors. In our unique transdisciplinary approach, we studied the fundamentals of blood pressure and examined its measuring modalities while focusing on their clinical use and sensing principles to identify material functionalities. Then, we carefully reviewed various categories of functional materials utilized in sensor building blocks allowing for comparative analysis of the performance of a wide range of materials throughout the sensor operational-life cycle. Not only this provides essential data to enhance the materials' properties and optimize their performance, but also, it highlights new perspectives and provides suggestions to develop the next generation pressure sensors for clinical use.
Collapse
Affiliation(s)
- Ahmed Al-Qatatsheh
- Faculty of Science, Engineering, and Technology (FSET), Swinburne University of Technology, Melbourne VIC 3122, Australia; (Y.M.); (N.S.)
| | - Yosry Morsi
- Faculty of Science, Engineering, and Technology (FSET), Swinburne University of Technology, Melbourne VIC 3122, Australia; (Y.M.); (N.S.)
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville VIC 3010, Australia;
| | - Ali Zolfagharian
- Faculty of Science, Engineering and Built Environment, School of Engineering, Deakin University, Waurn Ponds VIC 3216, Australia; (A.Z.); (A.Z.K.)
| | - Nisa Salim
- Faculty of Science, Engineering, and Technology (FSET), Swinburne University of Technology, Melbourne VIC 3122, Australia; (Y.M.); (N.S.)
| | - Abbas Z. Kouzani
- Faculty of Science, Engineering and Built Environment, School of Engineering, Deakin University, Waurn Ponds VIC 3216, Australia; (A.Z.); (A.Z.K.)
| | - Bobak Mosadegh
- Dalio Institute of Cardiovascular Imaging, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Saleh Gharaie
- Faculty of Science, Engineering and Built Environment, School of Engineering, Deakin University, Waurn Ponds VIC 3216, Australia; (A.Z.); (A.Z.K.)
| |
Collapse
|
9
|
Mohammed N, Cluff K, Griffith J, Loflin B. A Noninvasive, Electromagnetic, Epidermal Sensing Device for Hemodynamics Monitoring. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:1393-1404. [PMID: 31603799 DOI: 10.1109/tbcas.2019.2945575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Non-intrusive monitoring of blood flow parameters is vital for obtaining physiological and pathophysiological information pertaining to dynamic cardiovascular events and is feasible to achieve via non-invasive, conformal, wearable technologies. Here, we present a proof-of-concept of a fully integrated, high frequency (bandwidth 40 MHz), electromagnetic sensing device for monitoring limb hemodynamics and morphology associated with blood flow. The sensing architecture integrates a novel radio frequency (RF) skin patch resonator embedded with a coplanar outer loop antenna and a scalable, standalone wireless readout hardware based on standing wave ratio (SWR) bridge. The resonator itself is a copper-based open circuit planar Archimedean spiral with a rectangular cross-sectional area, chemically etched on a flexible polyimide substrate. The readout hardware is developed exploiting off-the-shelf components, fabricated on the top of a rigid FR4 substrate. The proposed readout circuit can measure resonant frequency of an RLC network. When energized by the external oscillating RF field via loop antenna, the resonator produces an electromagnetic field response which can be perturbed by dielectric variation inside its field boundary. Through leveraging this principle, the in-vitro experimental results from the benchtop models suggest that the resonator's RF attributes such as resonant frequency shift and magnitude variation of reflection coefficient due to fluid volume displacement can be successfully detected through the proposed hardware architecture. Hence, the system could be an alternative to the conventional, multimodal, non-invasive wearable sensing with an unprecedented capability of ubiquitous fluid phenomena detection from multiple sites of the human body.
Collapse
|