1
|
Frakking TT, Humphries S, Chang AB, Schwerin B, Palmer MM, David M, Kyriakou A, So S. Acoustic and Perceptual Profiles of Swallowing Sounds in Preterm Neonates: A Cross-Sectional Study Cohort. Dysphagia 2025:10.1007/s00455-025-10807-5. [PMID: 39934443 DOI: 10.1007/s00455-025-10807-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025]
Abstract
Cervical auscultation, commonly used by speech-language pathologists in some countries as an adjuvant to the clinical feeding evaluation, requires data on acoustic and perceptual profiles of swallowing sounds. Whilst these exists in adults and children, none currently exist for preterm neonates. Our study aims to establish the acoustic and perceptual parameters of swallowing sounds in preterm neonates. Swallowing sounds were recorded on a digital microphone during oral feeding observations. Acoustic parameters of duration, peak frequency, peak power and peak intensity were determined. Perceptual parameters heard pre, during and post-swallows were rated as 'present', 'absent', or 'cannot be determined'. Eighty preterm neonates (43 males; mean age = 33.4 weeks [SD 2.6]) from three Australian special care nurseries demonstrated mean swallow durations of < 1 s. The peak amplitude correlated with the number of medical co-morbidities (r = 0.24; 95%CI 0.03-0.45). Most preterm neonates have coordinated swallows that are loud, quick and completed in < 1 s. The perceptual parameters of a bolus transit sound was consistently present in all preterm neonates. One in five pre-term neonates have an uncoordinated swallow where wheeze, stridor or wet breath sounds were present post-swallow. Our study provides clinicians with acoustic and perceptual parameters to guide use of cervical auscultation in special care nurseries. Future studies should consider simultaneous instrumental assessment to ensure validity when using cervical auscultation to support diagnostic decision-making on swallowing coordination.
Collapse
Affiliation(s)
- Thuy T Frakking
- Research Development Unit, Caboolture Hospital, Metro North Health, McKean St, Caboolture, QLD, 4510, Australia.
- Child Health Research Centre, School of Medicine, The University of Queensland, South Brisbane, QLD, 4101, Australia.
- Speech Pathology Department, Gold Coast University Hospital, Gold Coast Health, 1 Hospital Boulevard, Southport, QLD, 4215, Australia.
- School of Health Sciences & Social Work, Griffith University, 1 Parklands Drive, Southport, Gold Coast, QLD, 4222, Australia.
| | - Seiji Humphries
- Research Development Unit, Caboolture Hospital, Metro North Health, McKean St, Caboolture, QLD, 4510, Australia
| | - Anne B Chang
- Department of Respiratory Medicine, Queensland Children's Hospital, 501 Stanley St, South Brisbane, QLD, 4101, Australia
- Child Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Australia
- Australian Centre for Health Services Innovation, Queensland University of Technology, Level 7, 62 Graham St, South Brisbane, QLD, 4101, Australia
| | - Belinda Schwerin
- School of Engineering and Built Environment, Griffith University, Parklands Dr, Southport, QLD, 4215, Australia
| | | | - Michael David
- The Daffodil Centre, The University of Sydney, a joint venture With Cancer Council, Sydney, Australia
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Annelise Kyriakou
- Child Health Research Centre, School of Medicine, The University of Queensland, South Brisbane, QLD, 4101, Australia
- Peninsula Plus, Speech Pathology Team, Frankston, VIC, 3199, Australia
| | - Stephen So
- School of Engineering and Built Environment, Griffith University, Parklands Dr, Southport, QLD, 4215, Australia
| |
Collapse
|
2
|
Khodami F, Mahoney AS, Coyle JL, Sejdić E. Elevating Patient Care With Deep Learning: High-Resolution Cervical Auscultation Signals for Swallowing Kinematic Analysis in Nasogastric Tube Patients. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2024; 12:711-720. [PMID: 39698476 PMCID: PMC11655099 DOI: 10.1109/jtehm.2024.3497895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024]
Abstract
Patients with nasogastric (NG) tubes require careful monitoring due to the potential impact of the tube on their ability to swallow safely. This study aimed to investigate the utility of high-resolution cervical auscultation (HRCA) signals in assessing swallowing functionality of patients using feeding tubes. HRCA, capturing swallowing vibratory and acoustic signals, has been explored as a surrogate for videofluoroscopy image analysis in previous research. In this study, we analyzed HRCA signals recorded from patients with NG tubes to identify swallowing kinematic events within this group of subjects. Machine learning architectures from prior research endeavors, originally designed for participants without NG tubes, were fine-tuned to accomplish three tasks in the target population: estimating the duration of upper esophageal sphincter opening, estimating the duration of laryngeal vestibule closure, and tracking the hyoid bone. The convolutional recurrent neural network proposed for the first task predicted the onset of upper esophageal sphincter opening and closure for 67.61% and 82.95% of patients, respectively, with an error margin of fewer than three frames. The hybrid model employed for the second task successfully predicted the onset of laryngeal vestibule closure and reopening for 79.62% and 75.80% of patients, respectively, with the same error margin. The stacked recurrent neural network identified hyoid bone position in test frames, achieving a 41.27% overlap with ground-truth outputs. By applying established algorithms to an unseen population, we demonstrated the utility of HRCA signals for swallowing assessment in individuals with NG tubes and showcased the generalizability of algorithms developed in our previous studies. Clinical impact: This study highlights the promise of HRCA signals for assessing swallowing in patients with NG tubes, potentially improving diagnosis, management, and care integration in both clinical and home healthcare settings.
Collapse
Affiliation(s)
- Farnaz Khodami
- Department of Electrical and Computer EngineeringFaculty of Applied Science and EngineeringUniversity of TorontoTorontoONM5S 1A4Canada
| | - Amanda S. Mahoney
- Department of the Communication Science and DisordersSchool of Health and Rehabilitation SciencesUniversity of PittsburghPittsburghPA15213USA
| | - James L. Coyle
- Department of the Communication Science and DisordersSchool of Health and Rehabilitation SciencesUniversity of PittsburghPittsburghPA15213USA
| | - Ervin Sejdić
- Department of Electrical and Computer EngineeringFaculty of Applied Science and EngineeringUniversity of TorontoTorontoONM5S 1A4Canada
- North York General HospitalTorontoONM2K 1E1Canada
| |
Collapse
|
3
|
Cron AC, David M, Orbell-Smith J, Chang AB, Weir KA, Frakking TT. Cervical Auscultation for Detecting Oropharyngeal Aspiration in Paediatric and Adult Populations: A Systematic Review and Meta-Analysis. Clin Otolaryngol 2024; 49:713-724. [PMID: 39115253 DOI: 10.1111/coa.14202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/12/2024] [Accepted: 06/29/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Cervical auscultation (CA) involves listening to swallowing and respiratory sounds and/or vibrations to detect oropharyngeal aspiration (OPA). CA has shown promising diagnostic test accuracy when used with the clinical swallowing examination and is gaining popularity in clinical practise. There has not been a review to date analysing the accuracy of CA in paediatric and adult populations with meta-analyses. OBJECTIVES To determine the accuracy of CA in detecting OPA in paediatric and adult populations, when compared to instrumental assessments. SEARCH METHODS Databases searched included MEDLINE, PubMed, Embase, CINAHL, AustHealth, Cochrane and Web of Science. The search was restricted between 01 October 2012 and 01 October 2022. SELECTION CRITERIA Inclusion criteria included (a) all clinical populations of all ages, (b) who have had an instrumental assessment and (c) CA. All study types were included. DATA COLLECTION AND ANALYSIS Studies were reviewed independently by two authors. The methodological quality of the studies was analysed using the QUADAS-2. MAIN RESULTS Ten studies met the inclusion criteria for this review and meta-analyses. The pooled diagnostic performance of CA in detecting OPA was 0.91 for sensitivity and 0.79 for specificity. The area under the curve summary receiver operating curve (sROC) was estimated to be 0.86, thereby indicating good discrimination of OPA. Most studies scored high for risk of bias in at least one domain in the QUADAS-2, likely attributed to a lack of high-quality prospectively designed studies. CONCLUSIONS There are promising diagnostic test accuracies for the use of CA in detection of OPA. Future research could include using CA in specific clinical populations and settings, and identifying standardised criteria for CA.
Collapse
Affiliation(s)
- Annelise C Cron
- Centre for Clinical Research, School of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Michael David
- The Daffodil Centre, The University of Sydney, A Joint Venture With Cancer Council, Sydney, New South Wales, Australia
| | - Jane Orbell-Smith
- Education Unit, Caboolture Hospital, Metro North Hospital & Health Service, Caboolture, Queensland, Australia
| | - Anne B Chang
- Department of Respiratory Medicine, Queensland Children's Hospital, South Brisbane, Queensland, Australia
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Casuarina, Northern Territory, Australia
- Australian Centre for Health Services Innovation, Queensland University of Technology, South Brisbane, Queensland, Australia
| | - Kelly A Weir
- Audiology & Speech Pathology, Division of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Speech Pathology Department, Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - Thuy T Frakking
- Centre for Clinical Research, School of Medicine, The University of Queensland, Herston, Queensland, Australia
- Research Development Unit, Caboolture Hospital, Metro North Hospital & Health Service, Caboolture, Queensland, Australia
- Speech Pathology Department, Gold Coast University Hospital, Gold Coast Hospital & Health Service, Southport, Queensland, Australia
| |
Collapse
|
4
|
Anwar A, Khalifa Y, Lucatorto E, Coyle JL, Sejdic E. Towards a comprehensive bedside swallow screening protocol using cross-domain transformation and high-resolution cervical auscultation. Artif Intell Med 2024; 154:102921. [PMID: 38991399 DOI: 10.1016/j.artmed.2024.102921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
High-resolution cervical auscultation (HRCA) is an emerging noninvasive and accessible option to assess swallowing by relying upon accelerometry and sound sensors. HRCA has shown tremendous promise and accuracy in identifying and predicting swallowing physiology and biomechanics with accuracies equivalent to trained human judges. These insights have historically been available only through instrumental swallowing evaluation methods, such as videofluoroscopy and endoscopy. HRCA uses supervised learning techniques to interpret swallowing physiology from the acquired signals, which are collected during radiographic assessment of swallowing using barium contrast. Conversely, bedside swallowing screening is typically conducted in non-radiographic settings using only water. This poses a challenge to translating and generalizing HRCA algorithms to bedside screening due to the rheological differences between barium and water. To address this gap, we proposed a cross-domain transformation framework that uses cycle generative adversarial networks to convert HRCA signals of water swallows into a domain compatible with the barium swallows-trained HRCA algorithms. The proposed framework achieved a cross-domain transformation accuracy that surpassed 90%. The authenticity of the generated signals was confirmed using a binary classifier to confirm the framework's capability to produce indistinguishable signals. This framework was also assessed for retaining swallow physiological and biomechanical properties in the signals by applying an existing model from the literature that identifies the opening and closure of the upper esophageal sphincter. The outcomes of this model showed nearly identical results between the generated and original signals. These findings suggest that the proposed transformation framework is a feasible avenue to advance HCRA towards clinical deployment for water-based swallowing screenings.
Collapse
Affiliation(s)
- Ayman Anwar
- Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada.
| | - Yassin Khalifa
- Center for Research Computing, University of Pittsburgh, Pittsburgh, PA, USA; Information Technology Analytics, University of Pittsburgh, Pittsburgh, PA, USA; Systems and Biomedical Engineering, Cairo University, Giza, Egypt.
| | - Erin Lucatorto
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - James L Coyle
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ervin Sejdic
- Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada; North York General Hospital, Toronto, ON, Canada.
| |
Collapse
|
5
|
Luo Y, Anwar A, Ren S, Coyle JL, Sejdic E. Towards Non-Invasive Swallowing Assessment: an AI-Powered Interface for Swallowing Kinematic Analysis using High-Resolution Cervical Auscultation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-6. [PMID: 40039155 DOI: 10.1109/embc53108.2024.10781763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Swallowing is a pivotal physiological function for human sustenance and hydration. Dysfunctions, termed dysphagia, necessitate prompt and precise diagnosis. Videofluoroscopic swallowing studies (VFSS) remain the gold standard for swallowing assessment but pose accessibility and radiation exposure concerns. High-resolution cervical auscultation (HRCA) presents a non-invasive alternative with comparable accuracy. Yet, existing studies have only assessed HRCA in tandem with VFSS, without applying it to clinical settings. We propose an AI-enhanced PC software deploying HRCA for real-time bedside swallowing screening. This software proficiently detects abnormalities and precisely measures key kinematic events, including upper esophageal sphincter opening and laryngeal vestibule closure duration. The system was evaluated through two studies, encompassing a VFSS comparative analysis and a usability study. Our findings underscored the software's superior operational efficiency and diagnostic accuracy, positioning our HRCA-based system as a refined and pragmatic alternative for dysphagia assessment.
Collapse
|
6
|
Use of the Stethoscope to Diagnose Gastrointestinal and Hepatic Disorders. Am J Gastroenterol 2023:00000434-990000000-00686. [PMID: 36827590 DOI: 10.14309/ajg.0000000000002233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023]
|
7
|
Khalifa Y, Mahoney AS, Lucatorto E, Coyle JL, Sejdić E. Non-Invasive Sensor-Based Estimation of Anterior-Posterior Upper Esophageal Sphincter Opening Maximal Distension. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2023; 11:182-190. [PMID: 36873304 PMCID: PMC9976940 DOI: 10.1109/jtehm.2023.3246919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/25/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
OBJECTIVE Dysphagia management relies on the evaluation of the temporospatial kinematic events of swallowing performed in videofluoroscopy (VF) by trained clinicians. The upper esophageal sphincter (UES) opening distension represents one of the important kinematic events that contribute to healthy swallowing. Insufficient distension of UES opening can lead to an accumulation of pharyngeal residue and subsequent aspiration which in turn can lead to adverse outcomes such as pneumonia. VF is usually used for the temporal and spatial evaluation of the UES opening; however, VF is not available in all clinical settings and may be inappropriate or undesirable for some patients. High resolution cervical auscultation (HRCA) is a noninvasive technology that uses neck-attached sensors and machine learning to characterize swallowing physiology by analyzing the swallow-induced vibrations/sounds in the anterior neck region. We investigated the ability of HRCA to noninvasively estimate the maximal distension of anterior-posterior (A-P) UES opening as accurately as the measurements performed by human judges from VF images. METHODS AND PROCEDURES Trained judges performed the kinematic measurement of UES opening duration and A-P UES opening maximal distension on 434 swallows collected from 133 patients. We used a hybrid convolutional recurrent neural network supported by attention mechanisms which takes HRCA raw signals as input and estimates the value of the A-P UES opening maximal distension as output. RESULTS The proposed network estimated the A-P UES opening maximal distension with an absolute percentage error of 30% or less for more than 64.14% of the swallows in the dataset. CONCLUSION This study provides substantial evidence for the feasibility of using HRCA to estimate one of the key spatial kinematic measurements used for dysphagia characterization and management. Clinical and Translational Impact Statement: The findings in this study have a direct impact on dysphagia diagnosis and management through providing a non-invasive and cheap way to estimate one of the most important swallowing kinematics, the UES opening distension, that contributes to safe swallowing. This study, along with other studies that utilize HRCA for swallowing kinematic analysis, paves the way for developing a widely available and easy-to-use tool for dysphagia diagnosis and management.
Collapse
Affiliation(s)
- Yassin Khalifa
- Department of Biomedical EngineeringCairo UniversityGiza12613Egypt
- Department of Electrical and Computer EngineeringSwanson School of EngineeringUniversity of PittsburghPittsburghPA15260USA
- Case Western Reserve University School of MedicineClevelandOH44106USA
- University Hospitals Harrington Heart and Vascular InstituteClevelandOH44106USA
| | - Amanda S. Mahoney
- Department of Communication Science and DisordersUniversity of PittsburghPittsburghPA15260USA
| | - Erin Lucatorto
- Department of Communication Science and DisordersUniversity of PittsburghPittsburghPA15260USA
| | - James L. Coyle
- Department of Communication Science and DisordersUniversity of PittsburghPittsburghPA15260USA
- Department of OtolaryngologyUniversity of PittsburghPittsburghPA15260USA
| | - Ervin Sejdić
- The Edward S. Rogers Sr. Department of Electrical and Computer EngineeringFaculty of Applied Science and EngineeringUniversity of TorontoTorontoONM5S 1A1Canada
- North York General HospitalTorontoONM2K 1E1Canada
| |
Collapse
|
8
|
Khalifa Y, Donohue C, Coyle JL, Sejdic E. Autonomous Swallow Segment Extraction Using Deep Learning in Neck-Sensor Vibratory Signals From Patients With Dysphagia. IEEE J Biomed Health Inform 2023; 27:956-967. [PMID: 36417738 PMCID: PMC10079637 DOI: 10.1109/jbhi.2022.3224323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dysphagia occurs secondary to a variety of underlying etiologies and can contribute to increased risk of adverse events such as aspiration pneumonia and premature mortality. Dysphagia is primarily diagnosed and characterized by instrumental swallowing exams such as videofluoroscopic swallowing studies. videofluoroscopic swallowing studies involve the inspection of a series of radiographic images for signs of swallowing dysfunction. Though effective, videofluoroscopic swallowing studies are only available in certain clinical settings and are not always desirable or feasible for certain patients. Because of the limitations of current instrumental swallow exams, research studies have explored the use of acceleration signals collected from neck sensors and demonstrated their potential in providing comparable radiation-free diagnostic value as videofluoroscopic swallowing studies. In this study, we used a hybrid deep convolutional recurrent neural network that can perform multi-level feature extraction (localized and across time) to annotate swallow segments automatically via multi-channel swallowing acceleration signals. In total, we used signals and videofluoroscopic swallowing study images of 3144 swallows from 248 patients with suspected dysphagia. Compared to other deep network variants, our network was superior at detecting swallow segments with an average area under the receiver operating characteristic curve value of 0.82 (95% confidence interval: 0.807-0.841), and was in agreement with up to 90% of the gold standard-labeled segments.
Collapse
|
9
|
Frakking TT, Chang AB, Carty C, Newing J, Weir KA, Schwerin B, So S. Using an Automated Speech Recognition Approach to Differentiate Between Normal and Aspirating Swallowing Sounds Recorded from Digital Cervical Auscultation in Children. Dysphagia 2022; 37:1482-1492. [PMID: 35092488 PMCID: PMC9643257 DOI: 10.1007/s00455-022-10410-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/19/2022] [Indexed: 12/16/2022]
Abstract
Use of machine learning to accurately detect aspirating swallowing sounds in children is an evolving field. Previously reported classifiers for the detection of aspirating swallowing sounds in children have reported sensitivities between 79 and 89%. This study aimed to investigate the accuracy of using an automatic speaker recognition approach to differentiate between normal and aspirating swallowing sounds recorded from digital cervical auscultation in children. We analysed 106 normal swallows from 23 healthy children (median 13 months; 52.1% male) and 18 aspirating swallows from 18 children (median 10.5 months; 61.1% male) who underwent concurrent videofluoroscopic swallow studies with digital cervical auscultation. All swallowing sounds were on thin fluids. A support vector machine classifier with a polynomial kernel was trained on feature vectors that comprised the mean and standard deviation of spectral subband centroids extracted from each swallowing sound in the training set. The trained support vector machine was then used to classify swallowing sounds in the test set. We found high accuracy in the differentiation of aspirating and normal swallowing sounds with 98% overall accuracy. Sensitivity for the detection of aspiration and normal swallowing sounds were 89% and 100%, respectively. There were consistent differences in time, power spectral density and spectral subband centroid features between aspirating and normal swallowing sounds in children. This study provides preliminary research evidence that aspirating and normal swallowing sounds in children can be differentiated accurately using machine learning techniques.
Collapse
Affiliation(s)
- Thuy T Frakking
- Research Development Unit, Caboolture Hospital, Metro North Hospital & Health Service, McKean St, Caboolture, QLD, 4510, Australia.
- Centre for Clinical Research, School of Medicine, The University of Queensland, Herston, QLD, 4029, Australia.
- Speech Pathology Department, Gold Coast University Hospital, Gold Coast Hospital & Health Service, 1 Hospital Boulevard, Southport, QLD, 4215, Australia.
| | - Anne B Chang
- Department of Respiratory Medicine, Queensland Children's Hospital, 501 Stanley St, South Brisbane, QLD, 4101, Australia
- Child Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Australia
- Australian Centre for Health Services Innovation, Queensland University of Technology, Level 7, 62 Graham St, South Brisbane, QLD, 4101, Australia
| | - Christopher Carty
- Research Development Unit, Caboolture Hospital, Metro North Hospital & Health Service, McKean St, Caboolture, QLD, 4510, Australia
- Griffith Centre of Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland, Griffith University, Gold Coast, 4222, Australia
| | - Jade Newing
- School of Engineering and Built Environment, Griffith University, Parklands Dr, Southport, QLD, 4215, Australia
| | - Kelly A Weir
- Menzies Health Institute QLD & School of Health Sciences & Social Work, Griffith University, Gold Coast Campus, 1 Parklands Avenue, Southport, QLD, 4222, Australia
- Allied Health Research, Gold Coast University Hospital, Gold Coast Hospital & Health Service, 1 Hospital Boulevard, Southport, QLD, 4215, Australia
| | - Belinda Schwerin
- School of Engineering and Built Environment, Griffith University, Parklands Dr, Southport, QLD, 4215, Australia
| | - Stephen So
- School of Engineering and Built Environment, Griffith University, Parklands Dr, Southport, QLD, 4215, Australia
| |
Collapse
|
10
|
Shu K, Mao S, Coyle JL, Sejdic E. Improving Non-Invasive Aspiration Detection With Auxiliary Classifier Wasserstein Generative Adversarial Networks. IEEE J Biomed Health Inform 2022; 26:1263-1272. [PMID: 34415842 PMCID: PMC8942096 DOI: 10.1109/jbhi.2021.3106565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Aspiration is a serious complication of swallowing disorders. Adequate detection of aspiration is essential in dysphagia management and treatment. High-resolution cervical auscultation has been increasingly considered as a promising noninvasive swallowing screening tool and has inspired automatic diagnosis with advanced algorithms. The performance of such algorithms relies heavily on the amount of training data. However, the practical collection of cervical auscultation signal is an expensive and time-consuming process because of the clinical settings and trained experts needed for acquisition and interpretations. Furthermore, the relatively infrequent incidence of severe airway invasion during swallowing studies constrains the performance of machine learning models. Here, we produced supplementary training exemplars for desired class by capturing the underlying distribution of original cervical auscultation signal features using auxiliary classifier Wasserstein generative adversarial networks. A 10-fold subject cross-validation was conducted on 2079 sets of 36-dimensional signal features collected from 189 patients undergoing swallowing examinations. The proposed data augmentation outperforms basic data sampling, cost-sensitive learning and other generative models with significant enhancement. This demonstrates the remarkable potential of proposed network in improving classification performance using cervical auscultation signals and paves the way of developing accurate noninvasive swallowing evaluation in dysphagia care.
Collapse
|
11
|
Schwartz R, Khalifa Y, Lucatorto E, Perera S, Coyle J, Sejdic E. A Preliminary Investigation of Similarities of High Resolution Cervical Auscultation Signals Between Thin Liquid Barium and Water Swallows. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2022; 10:4900109. [PMID: 34963825 PMCID: PMC8694539 DOI: 10.1109/jtehm.2021.3134926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/27/2021] [Accepted: 12/03/2021] [Indexed: 11/06/2022]
Abstract
Dysphagia, commonly referred to as abnormal swallowing, affects millions of people annually. If not diagnosed expeditiously, dysphagia can lead to more severe complications, such as pneumonia, nutritional deficiency, and dehydration. Bedside screening is the first step of dysphagia characterization and is usually based on pass/fail tests in which a nurse observes the patient performing water swallows to look for dysphagia overt signs such as coughing. Though quick and convenient, bedside screening only provides low-level judgment of impairment, lacks standardization, and suffers from subjectivity. Recently, high resolution cervical auscultation (HRCA) has been investigated as a less expensive and non-invasive method to diagnose dysphagia. It has shown strong preliminary evidence of its effectiveness in penetration-aspiration detection as well as multiple swallow kinematics. HRCA signals have traditionally been collected and investigated in conjunction with videofluoroscopy exams which are performed using barium boluses including thin liquid. An HRCA-based bedside screening is highly desirable to expedite the initial dysphagia diagnosis and overcome all the drawbacks of the current pass/fail screening tests. However, all research conducted for using HRCA in dysphagia is based on thin liquid barium boluses and thus not guaranteed to provide valid results for water boluses used in bedside screening. If HRCA signals show no significant differences between water and thin liquid barium boluses, then the same algorithms developed on thin liquid barium boluses used in diagnostic imaging studies, it can be then directly used with water boluses. This study investigates the similarities and differences between HRCA signals from thin liquid barium swallows compared to those signals from water swallows. Multiple features from the time, frequency, time-frequency, and information-theoretic domain were extracted from each type of swallow and a group of linear mixed models was tested to determine the significance of differences. Machine learning classifiers were fit to the data as well to determine if the swallowed material (thin liquid barium or water) can be correctly predicted from an unlabeled set of HRCA signals. The results demonstrated that there is no systematic difference between the HRCA signals of thin liquid barium swallows and water swallows. While no systematic difference was discovered, the evidence of complete conformity between HRCA signals of both materials was inconclusive. These results must be validated further to confirm conformity between the HRCA signals of thin liquid barium swallows and water swallows.
Collapse
Affiliation(s)
- Ryan Schwartz
- Department of Electrical and Computer EngineeringSwanson School of EngineeringUniversity of Pittsburgh Pittsburgh PA 15261 USA
| | - Yassin Khalifa
- Department of Electrical and Computer EngineeringSwanson School of EngineeringUniversity of Pittsburgh Pittsburgh PA 15261 USA
| | - Erin Lucatorto
- Department of Communication Science and DisordersSchool of Health and Rehabilitation SciencesUniversity of Pittsburgh Pittsburgh PA 15260 USA
| | - Subashan Perera
- Division of Geriatric MedicineDepartment of MedicineUniversity of Pittsburgh Pittsburgh PA 15261 USA
| | - James Coyle
- Department of Communication Science and DisordersSchool of Health and Rehabilitation SciencesUniversity of Pittsburgh Pittsburgh PA 15260 USA
| | - Ervin Sejdic
- Department of Electrical and Computer EngineeringSwanson School of EngineeringUniversity of Pittsburgh Pittsburgh PA 15261 USA
- The Edward S. Rogers Department of Electrical and Computer EngineeringFaculty of Applied Science and EngineeringUniversity of Toronto Toronto ON M5S 2E4 Canada
- North York General Hospital Toronto ON M2K 1E1 Canada
| |
Collapse
|
12
|
Donohue C, Khalifa Y, Mao S, Perera S, Sejdić E, Coyle JL. Characterizing Swallows From People With Neurodegenerative Diseases Using High-Resolution Cervical Auscultation Signals and Temporal and Spatial Swallow Kinematic Measurements. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:3416-3431. [PMID: 34428093 PMCID: PMC8642099 DOI: 10.1044/2021_jslhr-21-00134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/21/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
Purpose The prevalence of dysphagia in patients with neurodegenerative diseases (ND) is alarmingly high and frequently results in morbidity and accelerated mortality due to subsequent adverse events (e.g., aspiration pneumonia). Swallowing in patients with ND should be continuously monitored due to the progressive disease nature. Access to instrumental swallow evaluations can be challenging, and limited studies have quantified changes in temporal/spatial swallow kinematic measures in patients with ND. High-resolution cervical auscultation (HRCA), a dysphagia screening method, has accurately differentiated between safe and unsafe swallows, identified swallow kinematic events (e.g., laryngeal vestibule closure [LVC]), and classified swallows between healthy adults and patients with ND. This study aimed to (a) compare temporal/spatial swallow kinematic measures between patients with ND and healthy adults and (b) investigate HRCA's ability to annotate swallow kinematic events in patients with ND. We hypothesized there would be significant differences in temporal/spatial swallow measurements between groups and that HRCA would accurately annotate swallow kinematic events in patients with ND. Method Participants underwent videofluoroscopic swallowing studies with concurrent HRCA. We used linear mixed models to compare temporal/spatial swallow measurements (n = 170 ND patient swallows, n = 171 healthy adult swallows) and deep learning machine-learning algorithms to annotate specific temporal and spatial kinematic events in swallows from patients with ND. Results Differences (p < .05) were found between groups for several temporal and spatial swallow kinematic measures. HRCA signal features were used as input to machine-learning algorithms and annotated upper esophageal sphincter (UES) opening, UES closure, LVC, laryngeal vestibule reopening, and hyoid bone displacement with 66.25%, 85%, 68.18%, 70.45%, and 44.6% accuracy, respectively, compared to human judges' measurements. Conclusion This study demonstrates HRCA's potential in characterizing swallow function in patients with ND and other patient populations.
Collapse
Affiliation(s)
- Cara Donohue
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, PA
| | - Yassin Khalifa
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, PA
| | - Shitong Mao
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, PA
| | - Subashan Perera
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh, PA
| | - Ervin Sejdić
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, PA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, PA
- Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, PA
| | - James L. Coyle
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, PA
- Department of Otolaryngology, School of Medicine, University of Pittsburgh Medical Center, PA
| |
Collapse
|
13
|
Shu K, Coyle JL, Perera S, Khalifa Y, Sabry A, Sejdić E. Anterior-posterior distension of maximal upper esophageal sphincter opening is correlated with high-resolution cervical auscultation signal features. Physiol Meas 2021; 42. [PMID: 33601360 DOI: 10.1088/1361-6579/abe7cb] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 02/18/2021] [Indexed: 12/22/2022]
Abstract
Objective. Adequate upper esophageal sphincter (UES) opening is essential during swallowing to enable clearance of material into the digestive system, and videofluoroscopy (VF) is the most commonly deployed instrumental examination for assessment of UES opening. High-resolution cervical auscultation (HRCA) has been shown to be an effective, portable and cost-efficient screening tool for dysphagia with strong capabilities in non-invasively and accurately approximating manual measurements of VF images. In this study, we aimed to examine whether the HRCA signals are correlated to the manually measured anterior-posterior (AP) distension of maximal UES opening from VF recordings, under the hypothesis that they would be strongly associated.Approach. We developed a standardized method to spatially measure the AP distension of maximal UES opening in 203 swallows VF recording from 27 patients referred for VF due to suspected dysphagia. Statistical analysis was conducted to compare the manually measured AP distension of maximal UES opening from lateral plane VF images and features extracted from two sets of HRCA signal segments: whole swallow segments and segments excluding all events other than the duration of UES is opening.Main results. HRCA signal features were significantly associated with the normalized AP distension of the maximal UES opening in the longer whole swallowing segments and the association became much stronger when analysis was performed solely during the duration of UES opening.Significance. This preliminary feasibility study demonstrated the potential value of HRCA signals features in approximating the objective measurements of maximal UES AP distension and paves the way of developing HRCA to non-invasively and accurately predict human spatial measurement of VF kinematic events.
Collapse
Affiliation(s)
- Kechen Shu
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, United States of America
| | - James L Coyle
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, Department of Otolaryngology, School of Medicine, University of Pittsburgh, PA, 15260, United States of America
| | - Subashan Perera
- Division of Geriatrics, Department of Medecine, University of Pittsburgh, Pittsburgh, PA, 15261, United States of America
| | - Yassin Khalifa
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, United States of America
| | - Aliaa Sabry
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, PA, 15260, United States of America
| | - Ervin Sejdić
- Department of Electrical and Computer Engineering, Swanson School of Engineering, Department of Bioengineering, Swanson School of Engineering, Department of Biomedical informatics, School of Medecine, Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, PA, 15260, United States of America
| |
Collapse
|
14
|
Khalifa Y, Donohue C, Coyle JL, Sejdic E. Upper Esophageal Sphincter Opening Segmentation With Convolutional Recurrent Neural Networks in High Resolution Cervical Auscultation. IEEE J Biomed Health Inform 2021; 25:493-503. [PMID: 32750928 DOI: 10.1109/jbhi.2020.3000057] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Upper esophageal sphincter is an important anatomical landmark of the swallowing process commonly observed through the kinematic analysis of radiographic examinations that are vulnerable to subjectivity and clinical feasibility issues. Acting as the doorway of esophagus, upper esophageal sphincter allows the transition of ingested materials from pharyngeal into esophageal stages of swallowing and a reduced duration of opening can lead to penetration/aspiration and/or pharyngeal residue. Therefore, in this study we consider a non-invasive high resolution cervical auscultation-based screening tool to approximate the human ratings of upper esophageal sphincter opening and closure. Swallows were collected from 116 patients and a deep neural network was trained to produce a mask that demarcates the duration of upper esophageal sphincter opening. The proposed method achieved more than 90% accuracy and similar values of sensitivity and specificity when compared to human ratings even when tested over swallows from an independent clinical experiment. Moreover, the predicted opening and closure moments surprisingly fell within an inter-human comparable error of their human rated counterparts which demonstrates the clinical significance of high resolution cervical auscultation in replacing ionizing radiation-based evaluation of swallowing kinematics.
Collapse
|
15
|
Mao S, Sabry A, Khalifa Y, Coyle JL, Sejdic E. Estimation of laryngeal closure duration during swallowing without invasive X-rays. FUTURE GENERATIONS COMPUTER SYSTEMS : FGCS 2021; 115:610-618. [PMID: 33100445 PMCID: PMC7584133 DOI: 10.1016/j.future.2020.09.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Laryngeal vestibule (LV) closure is a critical physiologic event during swallowing, since it is the first line of defense against food bolus entering the airway. Identifying the laryngeal vestibule status, including closure, reopening and closure duration, provides indispensable references for assessing the risk of dysphagia and neuromuscular function. However, commonly used radiographic examinations, known as videofluoroscopy swallowing studies, are highly constrained by their radiation exposure and cost. Here, we introduce a non-invasive sensor-based system, that acquires high-resolution cervical auscultation signals from neck and accommodates advanced deep learning techniques for the detection of LV behaviors. The deep learning algorithm, which combined convolutional and recurrent neural networks, was developed with a dataset of 588 swallows from 120 patients with suspected dysphagia and further clinically tested on 45 samples from 16 healthy participants. For classifying the LV closure and opening statuses, our method achieved 78.94% and 74.89% accuracies for these two datasets, suggesting the feasibility of implementing sensor signals for LV prediction without traditional videofluoroscopy screening methods. The sensor supported system offers a broadly applicable computational approach for clinical diagnosis and biofeedback purposes in patients with swallowing disorders without the use of radiographic examination.
Collapse
Affiliation(s)
- Shitong Mao
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Aliaa Sabry
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Yassin Khalifa
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - James L Coyle
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Ervin Sejdic
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15260 USA
- Department of Bioengineering, Swanson School of Engineering Department of Biomedical Informatics, School of Medicine Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, PA 15260 USA
| |
Collapse
|
16
|
Sabry A, Mahoney AS, Mao S, Khalifa Y, Sejdić E, Coyle JL. Automatic Estimation of Laryngeal Vestibule Closure Duration Using High- Resolution Cervical Auscultation Signals. PERSPECTIVES OF THE ASHA SPECIAL INTEREST GROUPS 2020; 5:1647-1656. [PMID: 35937555 PMCID: PMC9355454 DOI: 10.1044/2020_persp-20-00073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Purpose Safe swallowing requires adequate protection of the airway to prevent swallowed materials from entering the trachea or lungs (i.e., aspiration). Laryngeal vestibule closure (LVC) is the first line of defense against swallowed materials entering the airway. Absent LVC or mistimed/ shortened closure duration can lead to aspiration, adverse medical consequences, and even death. LVC mechanisms can be judged commonly through the videofluoroscopic swallowing study; however, this type of instrumentation exposes patients to radiation and is not available or acceptable to all patients. There is growing interest in noninvasive methods to assess/monitor swallow physiology. In this study, we hypothesized that our noninvasive sensor- based system, which has been shown to accurately track hyoid displacement and upper esophageal sphincter opening duration during swallowing, could predict laryngeal vestibule status, including the onset of LVC and the onset of laryngeal vestibule reopening, in real time and estimate the closure duration with a comparable degree of accuracy as trained human raters. Method The sensor-based system used in this study is high-resolution cervical auscultation (HRCA). Advanced machine learning techniques enable HRCA signal analysis through feature extraction and complex algorithms. A deep learning model was developed with a data set of 588 swallows from 120 patients with suspected dysphagia and further tested on 45 swallows from 16 healthy participants. Results The new technique achieved an overall mean accuracy of 74.90% and 75.48% for the two data sets, respectively, in distinguishing LVC status. Closure duration ratios between automated and gold-standard human judgment of LVC duration were 1.13 for the patient data set and 0.93 for the healthy participant data set. Conclusions This study found that HRCA signal analysis using advanced machine learning techniques can effectively predict laryngeal vestibule status (closure or opening) and further estimate LVC duration. HRCA is potentially a noninvasive tool to estimate LVC duration for diagnostic and biofeedback purposes without X-ray imaging.
Collapse
Affiliation(s)
- Aliaa Sabry
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, PA
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Amanda S. Mahoney
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, PA
| | - Shitong Mao
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, PA
| | - Yassin Khalifa
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, PA
| | - Ervin Sejdić
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, PA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA
- Department of Biomedical Informatics, School of Medicine Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, PA
| | - James L. Coyle
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, PA
| |
Collapse
|
17
|
Spence A, Bangay S. Side-Channel Sensing: Exploiting Side-Channels to Extract Information for Medical Diagnostics and Monitoring. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE-JTEHM 2020; 8:4900213. [PMID: 33094036 PMCID: PMC7571867 DOI: 10.1109/jtehm.2020.3028996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/09/2020] [Accepted: 09/27/2020] [Indexed: 11/24/2022]
Abstract
Information within systems can be extracted through side-channels; unintended communication channels that leak information. The concept of side-channel sensing is explored, in which sensor data is analysed in non-trivial ways to recover subtle, hidden or unexpected information. Practical examples of side-channel sensing are well known in domains such as cybersecurity (CYB), but are not formally recognised within the domain of medical diagnostics and monitoring (MDM). This article reviews side-channel usage within CYB and MDM, identifying techniques and methodologies applicable to both domains. We establish a systematic structure for the use of side-channel sensing in MDM that is comparable to existing structures in CYB, and promote cross-domain transferability of knowledge, mindsets, and techniques.
Collapse
Affiliation(s)
- Aaron Spence
- School of Information TechnologyDeakin UniversityGeelongVIC3216Australia
| | - Shaun Bangay
- School of Information TechnologyDeakin UniversityGeelongVIC3216Australia
| |
Collapse
|
18
|
Donohue C, Khalifa Y, Perera S, Sejdić E, Coyle JL. How Closely do Machine Ratings of Duration of UES Opening During Videofluoroscopy Approximate Clinician Ratings Using Temporal Kinematic Analyses and the MBSImP? Dysphagia 2020; 36:707-718. [PMID: 32955619 DOI: 10.1007/s00455-020-10191-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
Clinicians evaluate swallow kinematic events by analyzing videofluoroscopy (VF) images for dysphagia management. The duration of upper esophageal sphincter opening (DUESO) is one important temporal swallow event, because reduced DUESO can result in pharyngeal residue and penetration/aspiration. VF is frequently used for evaluating swallowing but exposes patients to radiation and is not always feasible/readily available. High resolution cervical auscultation (HRCA) is a non-invasive, sensor-based dysphagia screening method that uses signal processing and machine learning to characterize swallowing. We investigated HRCA's ability to annotate DUESO and predict Modified Barium Swallow Impairment Profile (MBSImP) scores (component #14). We hypothesized that HRCA and machine learning techniques would detect DUESO with similar accuracy as human judges. Trained judges completed temporal kinematic measurements of DUESO on 719 swallows (116 patients) and 50 swallows (15 age-matched healthy adults). An MBSImP certified clinician completed MBSImP ratings on 100 swallows. A multi-layer convolutional recurrent neural network (CRNN) using HRCA signal features for input was used to detect DUESO. Generalized estimating equations models were used to determine statistically significant HRCA signal features for predicting DUESO MBSImP scores. A support vector machine (SVM) classifier and a leave-one-out procedure was used to predict DUESO MBSImP scores. The CRNN detected UES opening within a 3-frame tolerance for 82.6% of patient and 86% of healthy swallows and UES closure for 72.3% of patient and 64% of healthy swallows. The SVM classifier predicted DUESO MBSImP scores with 85.7% accuracy. This study provides evidence of HRCA's feasibility in detecting DUESO without VF images.
Collapse
Affiliation(s)
- Cara Donohue
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, 6035 Forbes Tower, Pittsburgh, PA, 15260, USA
| | - Yassin Khalifa
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Subashan Perera
- Division of Geriatrics, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Ervin Sejdić
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA.,Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA.,Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - James L Coyle
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, 6035 Forbes Tower, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
19
|
Donohue C, Khalifa Y, Perera S, Sejdić E, Coyle JL. A Preliminary Investigation of Whether HRCA Signals Can Differentiate Between Swallows from Healthy People and Swallows from People with Neurodegenerative Diseases. Dysphagia 2020; 36:635-643. [PMID: 32889627 DOI: 10.1007/s00455-020-10177-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
High-resolution cervical auscultation (HRCA) is an emerging method for non-invasively assessing swallowing by using acoustic signals from a contact microphone, vibratory signals from an accelerometer, and advanced signal processing and machine learning techniques. HRCA has differentiated between safe and unsafe swallows, predicted components of the Modified Barium Swallow Impairment Profile, and predicted kinematic events of swallowing such as hyoid bone displacement, laryngeal vestibular closure, and upper esophageal sphincter opening with a high degree of accuracy. However, HRCA has not been used to characterize swallow function in specific patient populations. This study investigated the ability of HRCA to differentiate between swallows from healthy people and people with neurodegenerative diseases. We hypothesized that HRCA would differentiate between swallows from healthy people and people with neurodegenerative diseases with a high degree of accuracy. We analyzed 170 swallows from 20 patients with neurodegenerative diseases and 170 swallows from 51 healthy age-matched adults who underwent concurrent video fluoroscopy with non-invasive neck sensors. We used a linear mixed model and several supervised machine learning classifiers that use HRCA signal features and a leave-one-out procedure to differentiate between swallows. Twenty-two HRCA signal features were statistically significant (p < 0.05) for predicting whether swallows were from healthy people or from patients with neurodegenerative diseases. Using the HRCA signal features alone, logistic regression and decision trees classified swallows between the two groups with 99% accuracy, 100% sensitivity, and 99% specificity. This provides preliminary research evidence that HRCA can differentiate swallow function between healthy and patient populations.
Collapse
Affiliation(s)
- Cara Donohue
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, 6035 Forbes Tower, Pittsburgh, PA, 15260, USA.
| | - Yassin Khalifa
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Subashan Perera
- Division of Geriatrics, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Ervin Sejdić
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA.,Department of Bioengineering, Swanson School of Engineering, Department of Biomedical Informatics, School of Medicine Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - James L Coyle
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, 6035 Forbes Tower, Pittsburgh, PA, 15260, USA
| |
Collapse
|
20
|
Coyle JL, Sejdić E. High-Resolution Cervical Auscultation and Data Science: New Tools to Address an Old Problem. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2020; 29:992-1000. [PMID: 32650655 PMCID: PMC7844341 DOI: 10.1044/2020_ajslp-19-00155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/15/2020] [Accepted: 02/16/2020] [Indexed: 06/11/2023]
Abstract
High-resolution cervical auscultation (HRCA) is an evolving clinical method for noninvasive screening of dysphagia that relies on data science, machine learning, and wearable sensors to investigate the characteristics of disordered swallowing function in people with dysphagia. HRCA has shown promising results in categorizing normal and disordered swallowing (i.e., screening) independent of human input, identifying a variety of swallowing physiological events as accurately as trained human judges. The system has been developed through a collaboration of data scientists, computer-electrical engineers, and speech-language pathologists. Its potential to automate dysphagia screening and contribute to evaluation lies in its noninvasive nature (wearable electronic sensors) and its growing ability to accurately replicate human judgments of swallowing data typically formed on the basis of videofluoroscopic imaging data. Potential contributions of HRCA when videofluoroscopic swallowing study may be unavailable, undesired, or not feasible for many patients in various settings are discussed, along with the development and capabilities of HRCA. The use of technological advances and wearable devices can extend the dysphagia clinician's reach and reinforce top-of-license practice for patients with swallowing disorders.
Collapse
Affiliation(s)
- James L. Coyle
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, PA
- Department of Otolaryngology, School of Medicine, University of Pittsburgh, PA
| | - Ervin Sejdić
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, PA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA
| |
Collapse
|
21
|
Khalifa Y, Coyle JL, Sejdić E. Non-invasive identification of swallows via deep learning in high resolution cervical auscultation recordings. Sci Rep 2020; 10:8704. [PMID: 32457331 PMCID: PMC7251089 DOI: 10.1038/s41598-020-65492-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/05/2020] [Indexed: 11/22/2022] Open
Abstract
High resolution cervical auscultation is a very promising noninvasive method for dysphagia screening and aspiration detection, as it does not involve the use of harmful ionizing radiation approaches. Automatic extraction of swallowing events in cervical auscultation is a key step for swallowing analysis to be clinically effective. Using time-varying spectral estimation of swallowing signals and deep feed forward neural networks, we propose an automatic segmentation algorithm for swallowing accelerometry and sounds that works directly on the raw swallowing signals in an online fashion. The algorithm was validated qualitatively and quantitatively using the swallowing data collected from 248 patients, yielding over 3000 swallows manually labeled by experienced speech language pathologists. With a detection accuracy that exceeded 95%, the algorithm has shown superior performance in comparison to the existing algorithms and demonstrated its generalizability when tested over 76 completely unseen swallows from a different population. The proposed method is not only of great importance to any subsequent swallowing signal analysis steps, but also provides an evidence that such signals can capture the physiological signature of the swallowing process.
Collapse
Affiliation(s)
- Yassin Khalifa
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - James L Coyle
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ervin Sejdić
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
22
|
Donohue C, Mao S, Sejdić E, Coyle JL. Tracking Hyoid Bone Displacement During Swallowing Without Videofluoroscopy Using Machine Learning of Vibratory Signals. Dysphagia 2020; 36:259-269. [PMID: 32419103 DOI: 10.1007/s00455-020-10124-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
Abstract
Identifying physiological impairments of swallowing is essential for determining accurate diagnosis and appropriate treatment for patients with dysphagia. The hyoid bone is an anatomical landmark commonly monitored during analysis of videofluoroscopic swallow studies (VFSSs). Its displacement is predictive of penetration/aspiration and is associated with other swallow kinematic events. However, VFSSs are not always readily available/feasible and expose patients to radiation. High-resolution cervical auscultation (HRCA), which uses acoustic and vibratory signals from a microphone and tri-axial accelerometer, is under investigation as a non-invasive dysphagia screening method and potential adjunct to VFSS when it is unavailable or not feasible. We investigated the ability of HRCA to independently track hyoid bone displacement during swallowing with similar accuracy to VFSS, by analyzing vibratory signals from a tri-axial accelerometer using machine learning techniques. We hypothesized HRCA would track hyoid bone displacement with a high degree of accuracy compared to humans. Trained judges completed frame-by-frame analysis of hyoid bone displacement on 400 swallows from 114 patients and 48 swallows from 16 age-matched healthy adults. Extracted features from vibratory signals were used to train the predictive algorithm to generate a bounding box surrounding the hyoid body on each frame. A metric of relative overlapped percentage (ROP) compared human and machine ratings. The mean ROP for all swallows analyzed was 50.75%, indicating > 50% of the bounding box containing the hyoid bone was accurately predicted in every frame. This provides evidence of the feasibility of accurate, automated hyoid bone displacement tracking using HRCA signals without use of VFSS images.
Collapse
Affiliation(s)
- Cara Donohue
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, 6035 Forbes Tower, Pittsburgh, PA, 15260, USA
| | - Shitong Mao
- Department of Electrical and Computer Engineering, Swanson School of Engineering, Department of Bioengineering, Swanson School of Engineering, Department of Biomedical Informatics, School of Medicine Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Ervin Sejdić
- Department of Electrical and Computer Engineering, Swanson School of Engineering, Department of Bioengineering, Swanson School of Engineering, Department of Biomedical Informatics, School of Medicine Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - James L Coyle
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, 6035 Forbes Tower, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
23
|
He Q, Perera S, Khalifa Y, Zhang Z, Mahoney AS, Sabry A, Donohue C, Coyle JL, Sejdic E. The Association of High Resolution Cervical Auscultation Signal Features With Hyoid Bone Displacement During Swallowing. IEEE Trans Neural Syst Rehabil Eng 2019; 27:1810-1816. [PMID: 31443032 PMCID: PMC6746228 DOI: 10.1109/tnsre.2019.2935302] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Recent publications have suggested that high-resolution cervical auscultation (HRCA) signals may provide an alternative non-invasive option for swallowing assessment. However, the relationship between hyoid bone displacement, a key component to safe swallowing, and HRCA signals is not thoroughly understood. Therefore, in this work we investigated the hypothesis that a strong relationship exists between hyoid displacement and HRCA signals. Videofuoroscopy data was collected for 129 swallows, simultaneously with vibratory/acoustic signals. Horizontal, vertical and hypotenuse displacements of the hyoid bone were measured through manual expert analysis of videofluoroscopy images. Our results showed that the vertical displacement of both the anterior and posterior landmarks of the hyoid bone was strongly associated with the Lempel-Ziv complexity of superior-inferior and anterior-posterior vibrations from HRCA signals. Horizontal and hypotenuse displacements of the posterior aspect of the hyoid bone were strongly associated with the standard deviation of swallowing sounds. Medial-Lateral vibrations and patient characteristics such as age, sex, and history of stroke were not significantly associated with the hyoid bone displacement. The results imply that some vibratory/acoustic features extracted from HRCA recordings can provide information about the magnitude and direction of hyoid bone displacement. These results provide additional support for using HRCA as a non-invasive tool to assess physiological aspects of swallowing such as the hyoid bone displacement.
Collapse
|
24
|
Mao S, Zhang Z, Khalifa Y, Donohue C, Coyle JL, Sejdic E. Neck sensor-supported hyoid bone movement tracking during swallowing. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181982. [PMID: 31417694 PMCID: PMC6689594 DOI: 10.1098/rsos.181982] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/10/2019] [Indexed: 06/10/2023]
Abstract
Hyoid bone movement is an important physiological event during swallowing that contributes to normal swallowing function. In order to determine the adequate hyoid bone movement, clinicians conduct an X-ray videofluoroscopic swallowing study, which even though it is the gold-standard technique, has limitations such as radiation exposure and cost. Here, we demonstrated the ability to track the hyoid bone movement using a non-invasive accelerometry sensor attached to the surface of the human neck. Specifically, deep neural networks were used to mathematically describe the relationship between hyoid bone movement and sensor signals. Training and validation of the system were conducted on a dataset of 400 swallows from 114 patients. Our experiments indicated the computer-aided hyoid bone movement prediction has a promising performance when compared with human experts' judgements, revealing that the universal pattern of the hyoid bone movement is acquirable by the highly nonlinear algorithm. Such a sensor-supported strategy offers an alternative and widely available method for online hyoid bone movement tracking without any radiation side-effects and provides a pronounced and flexible approach for identifying dysphagia and other swallowing disorders.
Collapse
Affiliation(s)
- Shitong Mao
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Zhenwei Zhang
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yassin Khalifa
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Cara Donohue
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - James L Coyle
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Ervin Sejdic
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|