1
|
Liang WS, Beaulieu-Jones B, Smalley S, Snyder M, Goetz LH, Schork NJ. Emerging therapeutic drug monitoring technologies: considerations and opportunities in precision medicine. Front Pharmacol 2024; 15:1348112. [PMID: 38545548 PMCID: PMC10965556 DOI: 10.3389/fphar.2024.1348112] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/27/2024] [Indexed: 11/11/2024] Open
Abstract
In recent years, the development of sensor and wearable technologies have led to their increased adoption in clinical and health monitoring settings. One area that is in early, but promising, stages of development is the use of biosensors for therapeutic drug monitoring (TDM). Traditionally, TDM could only be performed in certified laboratories and was used in specific scenarios to optimize drug dosage based on measurement of plasma/blood drug concentrations. Although TDM has been typically pursued in settings involving medications that are challenging to manage, the basic approach is useful for characterizing drug activity. TDM is based on the idea that there is likely a clear relationship between plasma/blood drug concentration (or concentration in other matrices) and clinical efficacy. However, these relationships may vary across individuals and may be affected by genetic factors, comorbidities, lifestyle, and diet. TDM technologies will be valuable for enabling precision medicine strategies to determine the clinical efficacy of drugs in individuals, as well as optimizing personalized dosing, especially since therapeutic windows may vary inter-individually. In this mini-review, we discuss emerging TDM technologies and their applications, and factors that influence TDM including drug interactions, polypharmacy, and supplement use. We also discuss how using TDM within single subject (N-of-1) and aggregated N-of-1 clinical trial designs provides opportunities to better capture drug response and activity at the individual level. Individualized TDM solutions have the potential to help optimize treatment selection and dosing regimens so that the right drug and right dose may be matched to the right person and in the right context.
Collapse
Affiliation(s)
- Winnie S. Liang
- Net/Bio Inc, Los Angeles, CA, United States
- Translational Genomics Research Institute (TGen), Phoenix, AZ, United States
| | - Brett Beaulieu-Jones
- Net/Bio Inc, Los Angeles, CA, United States
- University of Chicago, Chicago, IL, United States
| | | | - Michael Snyder
- Net/Bio Inc, Los Angeles, CA, United States
- Stanford University, Stanford, CA, United States
| | | | - Nicholas J. Schork
- Net/Bio Inc, Los Angeles, CA, United States
- Translational Genomics Research Institute (TGen), Phoenix, AZ, United States
| |
Collapse
|
2
|
Takashima Y, Haraguchi M, Naoi Y. GaN-Based High-Contrast Grating for Refractive Index Sensor Operating Blue-Violet Wavelength Region. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4444. [PMID: 32784872 PMCID: PMC7472401 DOI: 10.3390/s20164444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Owing to its versatility, optical refractive index (RI) sensors with compact size and high chemical stability are very suitable for a wide range of the applications in the internet of things (IoT), such as immunosensor, disease detection, and blood mapping. In this study, a RI sensor with very simple system and high chemical stability was developed using GaN-based high-contrast grating (HCG). The designed HCG pattern was fabricated on GaN-film grown on c-plane sapphire substrate. The fabricated GaN-HCG sensor can detect minuscule RI change of 1.71 × 10-3 with extreme simple surface normal irradiation system. The light behavior inside the GaN-HCG was discussed using numerical electromagnetic field calculation, and the deep understand of the sensing mechanism was provided. The simple system and very high chemical stability of our sensor exploit RI sensing applications in IoT society.
Collapse
Affiliation(s)
- Yuusuke Takashima
- Graduate School of Technology and Social Science, Tokushima University, Tokushima 770-8506, Japan; (M.H.); (Y.N.)
| | - Masanobu Haraguchi
- Graduate School of Technology and Social Science, Tokushima University, Tokushima 770-8506, Japan; (M.H.); (Y.N.)
- Institute of Post-LED Photonics, Tokushima University, Tokushima 770-8506, Japan
| | - Yoshiki Naoi
- Graduate School of Technology and Social Science, Tokushima University, Tokushima 770-8506, Japan; (M.H.); (Y.N.)
- Institute of Post-LED Photonics, Tokushima University, Tokushima 770-8506, Japan
| |
Collapse
|
3
|
Ghiasi B, Sefidbakht Y, Mozaffari-Jovin S, Gharehcheloo B, Mehrarya M, Khodadadi A, Rezaei M, Ranaei Siadat SO, Uskoković V. Hydroxyapatite as a biomaterial - a gift that keeps on giving. Drug Dev Ind Pharm 2020; 46:1035-1062. [PMID: 32476496 DOI: 10.1080/03639045.2020.1776321] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthetic analogue to biogenic apatite, hydroxyapatite (HA) has a number of physicochemical properties that make it an attractive candidate for diagnosis, treatment of disease and augmentation of biological tissues. Here we describe some of the recent studies on HA, which may provide bases for a number of new medical applications. The content of this review is divided to different medical application modes utilizing HA, including tissue engineering, medical implants, controlled drug delivery, gene therapies, cancer therapies and bioimaging. A number of advantages of HA over other biomaterials emerge from this discourse, including (i) biocompatibility, (ii) bioactivity, (iii) relatively simple synthesis protocols for the fabrication of nanoparticles with specific sizes and shapes, (iv) smart response to environmental stimuli, (v) facile functionalization and surface modification through noncovalent interactions, and (vi) the capacity for being simultaneously loaded with a wide range of therapeutic agents and switched to bioimaging modalities for uses in theranostics. A special section is dedicated to analysis of the safety of particulate HA as a component of parenterally administrable medications. It is concluded that despite the fact that many benefits come with the usage of HA, its deficiencies and potential side effects must be addressed before the translation to the clinical domain is pursued. Although HA has been known in the biomaterials world as the exemplar of safety, this safety proves to be the function of size, morphology, surface ligands and other structural and compositional parameters defining the particles. For this reason, each HA, especially when it comes in a novel structural form, must be treated anew from the safety research angle before being allowed to enter the clinical stage.
Collapse
Affiliation(s)
- Behrad Ghiasi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.,Nanobiotechnology Laboratory, The Faculty of New Technologies Engineering (NTE), Shahid Beheshti University, Tehran, Iran
| | - Sina Mozaffari-Jovin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Arash Khodadadi
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Science, Kerman, Iran
| | - Maryam Rezaei
- Institute of Biochemistry and Biophysics (IBB), Tehran University, Tehran, Iran
| | - Seyed Omid Ranaei Siadat
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.,Nanobiotechnology Laboratory, The Faculty of New Technologies Engineering (NTE), Shahid Beheshti University, Tehran, Iran
| | - Vuk Uskoković
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA
| |
Collapse
|