1
|
Steinfeldt J, Wild B, Buergel T, Pietzner M, Upmeier Zu Belzen J, Vauvelle A, Hegselmann S, Denaxas S, Hemingway H, Langenberg C, Landmesser U, Deanfield J, Eils R. Medical history predicts phenome-wide disease onset and enables the rapid response to emerging health threats. Nat Commun 2025; 16:585. [PMID: 39794311 PMCID: PMC11724087 DOI: 10.1038/s41467-025-55879-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
The COVID-19 pandemic exposed a global deficiency of systematic, data-driven guidance to identify high-risk individuals. Here, we illustrate the utility of routinely recorded medical history to predict the risk for 1741 diseases across clinical specialties and support the rapid response to emerging health threats such as COVID-19. We developed a neural network to learn from health records of 502,489 UK Biobank participants. Importantly, we observed discriminative improvements over basic demographic predictors for 1546 (88.8%) endpoints. After transferring the unmodified risk models to the All of US cohort, we replicated these improvements for 1115 (78.9%) of 1414 investigated endpoints, demonstrating generalizability across healthcare systems and historically underrepresented groups. Ultimately, we showed how this approach could have been used to identify individuals vulnerable to severe COVID-19. Our study demonstrates the potential of medical history to support guidance for emerging pandemics by systematically estimating risk for thousands of diseases at once at minimal cost.
Collapse
Affiliation(s)
- Jakob Steinfeldt
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Klinik/Centrum, Berlin, Germany
- Computational Medicine, Berlin Institute of Health (BIH), Charite - University Medicine Berlin, Berlin, Germany
- Friede Springer Cardiovascular Prevention Center@Charite, Charite - University Medicine Berlin, Berlin, Germany
- Institute of Cardiovascular Sciences, University College London, London, UK
| | - Benjamin Wild
- Institute of Cardiovascular Sciences, University College London, London, UK
- Center for Digital Health, Berlin Institute of Health (BIH), Charite - University Medicine Berlin, Berlin, Germany
| | - Thore Buergel
- Institute of Cardiovascular Sciences, University College London, London, UK
- Center for Digital Health, Berlin Institute of Health (BIH), Charite - University Medicine Berlin, Berlin, Germany
| | - Maik Pietzner
- Computational Medicine, Berlin Institute of Health (BIH), Charite - University Medicine Berlin, Berlin, Germany
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Precision Health University Research Institute, Queen Mary University of London and Barts NHS Trust, London, UK
| | - Julius Upmeier Zu Belzen
- Center for Digital Health, Berlin Institute of Health (BIH), Charite - University Medicine Berlin, Berlin, Germany
| | - Andre Vauvelle
- Institute of Health Informatics, University College London, London, UK
| | - Stefan Hegselmann
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Massachusetts, USA
- Pattern Recognition and Image Analysis Lab, University of Münster, Münster, Germany
| | - Spiros Denaxas
- Institute of Health Informatics, University College London, London, UK
- British Heart Foundation Data Science Centre, London, UK
- Health Data Research UK, London, UK
- National Institute for Health Research, Biomedical Research Centre at University College London Hospitals, London, UK
| | - Harry Hemingway
- Institute of Health Informatics, University College London, London, UK
- Health Data Research UK, London, UK
- National Institute for Health Research, Biomedical Research Centre at University College London Hospitals, London, UK
| | - Claudia Langenberg
- Computational Medicine, Berlin Institute of Health (BIH), Charite - University Medicine Berlin, Berlin, Germany
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Precision Health University Research Institute, Queen Mary University of London and Barts NHS Trust, London, UK
| | - Ulf Landmesser
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Klinik/Centrum, Berlin, Germany
- Friede Springer Cardiovascular Prevention Center@Charite, Charite - University Medicine Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Charite - University Medicine Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Berlin, Germany
| | - John Deanfield
- Institute of Cardiovascular Sciences, University College London, London, UK
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health (BIH), Charite - University Medicine Berlin, Berlin, Germany.
- Health Data Science Unit, Heidelberg University Hospital and BioQuant, Heidelberg, Germany.
| |
Collapse
|
2
|
Steinfeldt J, Wild B, Buergel T, Pietzner M, Upmeier Zu Belzen J, Vauvelle A, Hegselmann S, Denaxas S, Hemingway H, Langenberg C, Landmesser U, Deanfield J, Eils R. Medical history predicts phenome-wide disease onset and enables the rapid response to emerging health threats. Nat Commun 2024; 15:4257. [PMID: 38763986 PMCID: PMC11102902 DOI: 10.1038/s41467-024-48568-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/03/2024] [Indexed: 05/21/2024] Open
Abstract
The COVID-19 pandemic exposed a global deficiency of systematic, data-driven guidance to identify high-risk individuals. Here, we illustrate the utility of routinely recorded medical history to predict the risk for 1883 diseases across clinical specialties and support the rapid response to emerging health threats such as COVID-19. We developed a neural network to learn from health records of 502,460 UK Biobank. Importantly, we observed discriminative improvements over basic demographic predictors for 1774 (94.3%) endpoints. After transferring the unmodified risk models to the All of US cohort, we replicated these improvements for 1347 (89.8%) of 1500 investigated endpoints, demonstrating generalizability across healthcare systems and historically underrepresented groups. Ultimately, we showed how this approach could have been used to identify individuals vulnerable to severe COVID-19. Our study demonstrates the potential of medical history to support guidance for emerging pandemics by systematically estimating risk for thousands of diseases at once at minimal cost.
Collapse
Affiliation(s)
- Jakob Steinfeldt
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Klinik/Centrum, Charitéplatz 1, 10117, Berlin, Germany
- Computational Medicine, Berlin Institute of Health (BIH), Charite - University Medicine Berlin, Berlin, Germany
- Friede Springer Cardiovascular Prevention Center@Charite, Charite - University Medicine Berlin, Berlin, Germany
- Institute of Cardiovascular Sciences, University College London, London, UK
| | - Benjamin Wild
- Center for Digital Health, Berlin Institute of Health (BIH), Charite - University Medicine Berlin, Berlin, Germany
| | - Thore Buergel
- Institute of Cardiovascular Sciences, University College London, London, UK
- Center for Digital Health, Berlin Institute of Health (BIH), Charite - University Medicine Berlin, Berlin, Germany
| | - Maik Pietzner
- Computational Medicine, Berlin Institute of Health (BIH), Charite - University Medicine Berlin, Berlin, Germany
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Precision Health University Research Institute, Queen Mary University of London and Barts NHS Trust, London, UK
| | - Julius Upmeier Zu Belzen
- Center for Digital Health, Berlin Institute of Health (BIH), Charite - University Medicine Berlin, Berlin, Germany
| | - Andre Vauvelle
- Institute of Health Informatics, University College London, London, UK
| | - Stefan Hegselmann
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Massachusetts, USA
- Pattern Recognition and Image Analysis Lab, University of Münster, Münster, Germany
| | - Spiros Denaxas
- Institute of Health Informatics, University College London, London, UK
- British Heart Foundation Data Science Centre, London, UK
- Health Data Research UK, London, UK
- National Institute for Health Research, Biomedical Research Centre at University College London Hospitals National Institute for Health Research, Biomedical Research Centre, London, UK
| | - Harry Hemingway
- Institute of Health Informatics, University College London, London, UK
- Health Data Research UK, London, UK
- National Institute for Health Research, Biomedical Research Centre at University College London Hospitals National Institute for Health Research, Biomedical Research Centre, London, UK
| | - Claudia Langenberg
- Computational Medicine, Berlin Institute of Health (BIH), Charite - University Medicine Berlin, Berlin, Germany
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Precision Health University Research Institute, Queen Mary University of London and Barts NHS Trust, London, UK
| | - Ulf Landmesser
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Klinik/Centrum, Charitéplatz 1, 10117, Berlin, Germany
- Friede Springer Cardiovascular Prevention Center@Charite, Charite - University Medicine Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Charite - University Medicine Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Berlin, Germany
| | - John Deanfield
- Institute of Cardiovascular Sciences, University College London, London, UK
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health (BIH), Charite - University Medicine Berlin, Berlin, Germany.
- Health Data Science Unit, Heidelberg University Hospital and BioQuant, Heidelberg, Germany.
| |
Collapse
|
3
|
Das A, Dhillon P. Application of machine learning in measurement of ageing and geriatric diseases: a systematic review. BMC Geriatr 2023; 23:841. [PMID: 38087195 PMCID: PMC10717316 DOI: 10.1186/s12877-023-04477-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND As the ageing population continues to grow in many countries, the prevalence of geriatric diseases is on the rise. In response, healthcare providers are exploring novel methods to enhance the quality of life for the elderly. Over the last decade, there has been a remarkable surge in the use of machine learning in geriatric diseases and care. Machine learning has emerged as a promising tool for the diagnosis, treatment, and management of these conditions. Hence, our study aims to find out the present state of research in geriatrics and the application of machine learning methods in this area. METHODS This systematic review followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and focused on healthy ageing in individuals aged 45 and above, with a specific emphasis on the diseases that commonly occur during this process. The study mainly focused on three areas, that are machine learning, the geriatric population, and diseases. Peer-reviewed articles were searched in the PubMed and Scopus databases with inclusion criteria of population above 45 years, must have used machine learning methods, and availability of full text. To assess the quality of the studies, Joanna Briggs Institute's (JBI) critical appraisal tool was used. RESULTS A total of 70 papers were selected from the 120 identified papers after going through title screening, abstract screening, and reference search. Limited research is available on predicting biological or brain age using deep learning and different supervised machine learning methods. Neurodegenerative disorders were found to be the most researched disease, in which Alzheimer's disease was focused the most. Among non-communicable diseases, diabetes mellitus, hypertension, cancer, kidney diseases, and cardiovascular diseases were included, and other rare diseases like oral health-related diseases and bone diseases were also explored in some papers. In terms of the application of machine learning, risk prediction was the most common approach. Half of the studies have used supervised machine learning algorithms, among which logistic regression, random forest, XG Boost were frequently used methods. These machine learning methods were applied to a variety of datasets including population-based surveys, hospital records, and digitally traced data. CONCLUSION The review identified a wide range of studies that employed machine learning algorithms to analyse various diseases and datasets. While the application of machine learning in geriatrics and care has been well-explored, there is still room for future development, particularly in validating models across diverse populations and utilizing personalized digital datasets for customized patient-centric care in older populations. Further, we suggest a scope of Machine Learning in generating comparable ageing indices such as successful ageing index.
Collapse
Affiliation(s)
- Ayushi Das
- International Institute for Population Sciences, Deonar, Mumbai, 400088, India
| | - Preeti Dhillon
- Department of Survey Research and Data Analytics, International Institute for Population Sciences, Deonar, Mumbai, 400088, India.
| |
Collapse
|
4
|
Chen K, Abtahi F, Carrero JJ, Fernandez-Llatas C, Seoane F. Process mining and data mining applications in the domain of chronic diseases: A systematic review. Artif Intell Med 2023; 144:102645. [PMID: 37783545 DOI: 10.1016/j.artmed.2023.102645] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 10/04/2023]
Abstract
The widespread use of information technology in healthcare leads to extensive data collection, which can be utilised to enhance patient care and manage chronic illnesses. Our objective is to summarise previous studies that have used data mining or process mining methods in the context of chronic diseases in order to identify research trends and future opportunities. The review covers articles that pertain to the application of data mining or process mining methods on chronic diseases that were published between 2000 and 2022. Articles were sourced from PubMed, Web of Science, EMBASE, and Google Scholar based on predetermined inclusion and exclusion criteria. A total of 71 articles met the inclusion criteria and were included in the review. Based on the literature review results, we detected a growing trend in the application of data mining methods in diabetes research. Additionally, a distinct increase in the use of process mining methods to model clinical pathways in cancer research was observed. Frequently, this takes the form of a collaborative integration of process mining, data mining, and traditional statistical methods. In light of this collaborative approach, the meticulous selection of statistical methods based on their underlying assumptions is essential when integrating these traditional methods with process mining and data mining methods. Another notable challenge is the lack of standardised guidelines for reporting process mining studies in the medical field. Furthermore, there is a pressing need to enhance the clinical interpretation of data mining and process mining results.
Collapse
Affiliation(s)
- Kaile Chen
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 17177 Stockholm, Sweden; School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, Division of Ergonomics, KTH Royal Institute of Technology, 14157 Stockholm, Sweden.
| | - Farhad Abtahi
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 17177 Stockholm, Sweden; School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, Division of Ergonomics, KTH Royal Institute of Technology, 14157 Stockholm, Sweden; Department of Clinical Physiology, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Juan-Jesus Carrero
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Carlos Fernandez-Llatas
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 17177 Stockholm, Sweden; SABIEN, ITACA, Universitat Politècnica de València, Spain
| | - Fernando Seoane
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Clinical Physiology, Karolinska University Hospital, 17176 Stockholm, Sweden; Department of Medical Technology, Karolinska University Hospital, 17176 Stockholm, Sweden; Department of Textile Technology, University of Borås, 50190 Borås, Sweden
| |
Collapse
|
5
|
Hossain E, Rana R, Higgins N, Soar J, Barua PD, Pisani AR, Turner K. Natural Language Processing in Electronic Health Records in relation to healthcare decision-making: A systematic review. Comput Biol Med 2023; 155:106649. [PMID: 36805219 DOI: 10.1016/j.compbiomed.2023.106649] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND Natural Language Processing (NLP) is widely used to extract clinical insights from Electronic Health Records (EHRs). However, the lack of annotated data, automated tools, and other challenges hinder the full utilisation of NLP for EHRs. Various Machine Learning (ML), Deep Learning (DL) and NLP techniques are studied and compared to understand the limitations and opportunities in this space comprehensively. METHODOLOGY After screening 261 articles from 11 databases, we included 127 papers for full-text review covering seven categories of articles: (1) medical note classification, (2) clinical entity recognition, (3) text summarisation, (4) deep learning (DL) and transfer learning architecture, (5) information extraction, (6) Medical language translation and (7) other NLP applications. This study follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULT AND DISCUSSION EHR was the most commonly used data type among the selected articles, and the datasets were primarily unstructured. Various ML and DL methods were used, with prediction or classification being the most common application of ML or DL. The most common use cases were: the International Classification of Diseases, Ninth Revision (ICD-9) classification, clinical note analysis, and named entity recognition (NER) for clinical descriptions and research on psychiatric disorders. CONCLUSION We find that the adopted ML models were not adequately assessed. In addition, the data imbalance problem is quite important, yet we must find techniques to address this underlining problem. Future studies should address key limitations in studies, primarily identifying Lupus Nephritis, Suicide Attempts, perinatal self-harmed and ICD-9 classification.
Collapse
Affiliation(s)
- Elias Hossain
- School of Engineering & Physical Sciences, North South University, Dhaka 1229, Bangladesh.
| | - Rajib Rana
- School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield Central QLD 4300, Australia
| | - Niall Higgins
- School of Management and Enterprise, University of Southern Queensland, Darling Heights QLD 4350, Australia; School of Nursing, Queensland University of Technology, Kelvin Grove, Brisbane, QLD 4000, Australia; Metro North Mental Health, Herston QLD 4029, Australia
| | - Jeffrey Soar
- School of Business, University of Southern Queensland, Springfield Central QLD 4300, Australia
| | - Prabal Datta Barua
- School of Business, University of Southern Queensland, Springfield Central QLD 4300, Australia
| | - Anthony R Pisani
- Center for the Study and Prevention of Suicide, University of Rochester, Rochester, NY, United States
| | - Kathryn Turner
- School of Nursing, Queensland University of Technology, Kelvin Grove, Brisbane, QLD 4000, Australia
| |
Collapse
|
6
|
Wang D, Ali F, Liu H, Cheng Y, Wu M, Saleem MZ, Zheng H, Wei L, Chu J, Xie Q, Shen A, Peng J. Quercetin inhibits angiotensin II-induced vascular smooth muscle cell proliferation and activation of JAK2/STAT3 pathway: A target based networking pharmacology approach. Front Pharmacol 2022; 13:1002363. [PMID: 36324691 PMCID: PMC9618806 DOI: 10.3389/fphar.2022.1002363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
The rapid growth of vascular smooth muscle cells (VSMCs) represents crucial pathological changes during the development of hypertensive vascular remodeling. Although quercetin exhibits significantly therapeutic effects on antihypertension, the systematic role of quercetin and its exact mode of action in relation to the VSMCs growth and its hypertension-related networking pharmacology is not well-documented. Therefore, the effect of quercetin was investigated using networking pharmacology followed by in vitro strategies to explore its efficacy against angiotensin II (Ang II)-induced cell proliferation. Putative genes of hypertension and quercetin were collected using database mining, and their correlation was investigated. Subsequently, a network of protein-protein interactions was constructed and gene ontology (GO) analysis was performed to identify the role of important genes (including CCND1) and key signaling pathways [including cell proliferation and Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway]. We therefore further investigated the effects of quercetin in Ang II-stimulated VSMCs. This current research revealed that quercetin significantly reduced the cell confluency, cell number, and cell viability, as well as expression of proliferating cell nuclear antigen (PCNA) in Ang II-stimulated VSMCs. Mechanistic study by western blotting confirmed that quercetin treatment attenuated the activation of JAK2 and STAT3 by reducing its phosphorylation in Ang II stimulated VSMCs. Collectively, the current study revealed the inhibitory effects of quercetin on proliferation of Ang II stimulated VSMCs, by inhibiting the activation of JAK2/STAT3 signaling might be one of underlying mechanisms.
Collapse
Affiliation(s)
- Di Wang
- Clinical Research Institute, the Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Farman Ali
- Clinical Research Institute, the Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Huixin Liu
- Clinical Research Institute, the Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Ying Cheng
- Clinical Research Institute, the Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Meizhu Wu
- Clinical Research Institute, the Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Muhammad Zubair Saleem
- Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, Fujian, China
| | - Huifang Zheng
- Clinical Research Institute, the Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Lihui Wei
- Clinical Research Institute, the Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Jiangfeng Chu
- Clinical Research Institute, the Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Qiurong Xie
- Clinical Research Institute, the Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Aling Shen
- Clinical Research Institute, the Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
- *Correspondence: Aling Shen, ; Jun Peng,
| | - Jun Peng
- Clinical Research Institute, the Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
- *Correspondence: Aling Shen, ; Jun Peng,
| |
Collapse
|
7
|
Swain S, Bhushan B, Dhiman G, Viriyasitavat W. Appositeness of Optimized and Reliable Machine Learning for Healthcare: A Survey. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2022; 29:3981-4003. [PMID: 35342282 PMCID: PMC8939887 DOI: 10.1007/s11831-022-09733-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/09/2022] [Indexed: 05/04/2023]
Abstract
Machine Learning (ML) has been categorized as a branch of Artificial Intelligence (AI) under the Computer Science domain wherein programmable machines imitate human learning behavior with the help of statistical methods and data. The Healthcare industry is one of the largest and busiest sectors in the world, functioning with an extensive amount of manual moderation at every stage. Most of the clinical documents concerning patient care are hand-written by experts, selective reports are machine-generated. This process elevates the chances of misdiagnosis thereby, imposing a risk to a patient's life. Recent technological adoptions for automating manual operations have witnessed extensive use of ML in its applications. The paper surveys the applicability of ML approaches in automating medical systems. The paper discusses most of the optimized statistical ML frameworks that encourage better service delivery in clinical aspects. The universal adoption of various Deep Learning (DL) and ML techniques as the underlying systems for a variety of wellness applications, is delineated by challenges and elevated by myriads of security. This work tries to recognize a variety of vulnerabilities occurring in medical procurement, admitting the concerns over its predictive performance from a privacy point of view. Finally providing possible risk delimiting facts and directions for active challenges in the future.
Collapse
Affiliation(s)
- Subhasmita Swain
- Department of Computer Science and Engineering, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Bharat Bhushan
- Department of Computer Science and Engineering, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Gaurav Dhiman
- Department of Computer Science, Government Bikram College of Commerce, Patiala, India
- University Centre for Research and Development, Department of Computer Science and Engineering, Chandigarh University, Gharuan, Mohali, India
- Department of Computer Science and Engineering, Graphic Era Deemed to be University, Dehradun, India
| | - Wattana Viriyasitavat
- Department of Statistics, Faculty of Commerce and Accountancy, Chulalongkorn Business School, Bangkok, Thailand
| |
Collapse
|
8
|
Chowdhury M, Cervantes EG, Chan WY, Seitz DP. Use of Machine Learning and Artificial Intelligence Methods in Geriatric Mental Health Research Involving Electronic Health Record or Administrative Claims Data: A Systematic Review. Front Psychiatry 2021; 12:738466. [PMID: 34616322 PMCID: PMC8488098 DOI: 10.3389/fpsyt.2021.738466] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Electronic health records (EHR) and administrative healthcare data (AHD) are frequently used in geriatric mental health research to answer various health research questions. However, there is an increasing amount and complexity of data available that may lend itself to alternative analytic approaches using machine learning (ML) or artificial intelligence (AI) methods. We performed a systematic review of the current application of ML or AI approaches to the analysis of EHR and AHD in geriatric mental health. Methods: We searched MEDLINE, Embase, and PsycINFO to identify potential studies. We included all articles that used ML or AI methods on topics related to geriatric mental health utilizing EHR or AHD data. We assessed study quality either by Prediction model Risk OF Bias ASsessment Tool (PROBAST) or Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) checklist. Results: We initially identified 391 articles through an electronic database and reference search, and 21 articles met inclusion criteria. Among the selected studies, EHR was the most used data type, and the datasets were mainly structured. A variety of ML and AI methods were used, with prediction or classification being the main application of ML or AI with the random forest as the most common ML technique. Dementia was the most common mental health condition observed. The relative advantages of ML or AI techniques compared to biostatistical methods were generally not assessed. Only in three studies, low risk of bias (ROB) was observed according to all the PROBAST domains but in none according to QUADAS-2 domains. The quality of study reporting could be further improved. Conclusion: There are currently relatively few studies using ML and AI in geriatric mental health research using EHR and AHD methods, although this field is expanding. Aside from dementia, there are few studies of other geriatric mental health conditions. The lack of consistent information in the selected studies precludes precise comparisons between them. Improving the quality of reporting of ML and AI work in the future would help improve research in the field. Other courses of improvement include using common data models to collect/organize data, and common datasets for ML model validation.
Collapse
Affiliation(s)
- Mohammad Chowdhury
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Eddie Gasca Cervantes
- Department of Electrical and Computer Engineering, Queen's University, Kingston, ON, Canada
| | - Wai-Yip Chan
- Department of Electrical and Computer Engineering, Queen's University, Kingston, ON, Canada
| | - Dallas P. Seitz
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|