1
|
du Pasquier C, Tessmer L, Scholl I, Tilton L, Chen T, Tibbits S, Okamura A. Haptiknit: Distributed stiffness knitting for wearable haptics. Sci Robot 2024; 9:eado3887. [PMID: 39693404 DOI: 10.1126/scirobotics.ado3887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024]
Abstract
Haptic devices typically rely on rigid actuators and bulky power supply systems, limiting wearability. Soft materials improve comfort, but careful distribution of stiffness is required to ground actuation forces and enable load transfer to the skin. We present Haptiknit, an approach in which soft, wearable, knit textiles with embedded pneumatic actuators enable programmable haptic display. By integrating pneumatic actuators within high- and low-stiffness machine-knit layers, each actuator can transmit 40 newtons in force with a bandwidth of 14.5 hertz. We demonstrate the concept with an adjustable sleeve for the forearm coupled to an untethered pneumatic control system that conveys a diverse array of social touch signals. We assessed the sleeve's performance for discriminative and affective touch in a three-part user study and compared our results with those of prior electromagnetically actuated approaches. Haptiknit improves touch localization compared with vibrotactile stimulation and communicates social touch cues with fewer actuators than pneumatic textiles that do not invoke distributed stiffness. The Haptiknit sleeve resulted in similar recognition of social touch gestures compared to a voice-coil array but represented a more portable and comfortable form factor.
Collapse
Affiliation(s)
| | - Lavender Tessmer
- Self-Assembly Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - Tian Chen
- Architected Intelligent Matter Laboratory, University of Houston, Houston, TX, USA
| | - Skylar Tibbits
- Self-Assembly Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | |
Collapse
|
2
|
Mohammadi V, Tajdani M, Masaei M, Mohammadi Ghalehney S, Lee SCK, Behboodi A. DE-AFO: A Robotic Ankle Foot Orthosis for Children with Cerebral Palsy Powered by Dielectric Elastomer Artificial Muscle. SENSORS (BASEL, SWITZERLAND) 2024; 24:3787. [PMID: 38931570 PMCID: PMC11207423 DOI: 10.3390/s24123787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Conventional passive ankle foot orthoses (AFOs) have not seen substantial advances or functional improvements for decades, failing to meet the demands of many stakeholders, especially the pediatric population with neurological disorders. Our objective is to develop the first comfortable and unobtrusive powered AFO for children with cerebral palsy (CP), the DE-AFO. CP is the most diagnosed neuromotor disorder in the pediatric population. The standard of care for ankle control dysfunction associated with CP, however, is an unmechanized, bulky, and uncomfortable L-shaped conventional AFO. These passive orthoses constrain the ankle's motion and often cause muscle disuse atrophy, skin damage, and adverse neural adaptations. While powered orthoses could enhance natural ankle motion, their reliance on bulky, noisy, and rigid actuators like DC motors limits their acceptability. Our innovation, the DE-AFO, emerged from insights gathered during customer discovery interviews with 185 stakeholders within the AFO ecosystem as part of the NSF I-Corps program. The DE-AFO is a biomimetic robot that employs artificial muscles made from an electro-active polymer called dielectric elastomers (DEs) to assist ankle movements in the sagittal planes. It incorporates a gait phase detection controller to synchronize the artificial muscles with natural gait cycles, mimicking the function of natural ankle muscles. This device is the first of its kind to utilize lightweight, compact, soft, and silent artificial muscles that contract longitudinally, addressing traditional actuated AFOs' limitations by enhancing the orthosis's natural feel, comfort, and acceptability. In this paper, we outline our design approach and describe the three main components of the DE-AFO: the artificial muscle technology, the finite state machine (the gait phase detection system), and its mechanical structure. To verify the feasibility of our design, we theoretically calculated if DE-AFO can provide the necessary ankle moment assistance for children with CP-aligning with moments observed in typically developing children. To this end, we calculated the ankle moment deficit in a child with CP when compared with the normative moment of seven typically developing children. Our results demonstrated that the DE-AFO can provide meaningful ankle moment assistance, providing up to 69% and 100% of the required assistive force during the pre-swing phase and swing period of gait, respectively.
Collapse
Affiliation(s)
- Vahid Mohammadi
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE 68106, USA; (V.M.); (M.M.)
| | | | - Mobina Masaei
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE 68106, USA; (V.M.); (M.M.)
| | | | - Samuel C. K. Lee
- Department of Physical Therapy, University of Delaware, Newark, DE 19716, USA
| | - Ahad Behboodi
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE 68106, USA; (V.M.); (M.M.)
| |
Collapse
|
3
|
Shin W, Nam D, Ahn B, Kim SJ, Lee DY, Kwon S, Kim J. Ankle dorsiflexion assistance of patients with foot drop using a powered ankle-foot orthosis to improve the gait asymmetry. J Neuroeng Rehabil 2023; 20:140. [PMID: 37864265 PMCID: PMC10589991 DOI: 10.1186/s12984-023-01261-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Foot drop is a neuromuscular disorder that causes abnormal gait patterns. This study developed a pneumatically powered ankle-foot orthosis (AFO) to improve the gait patterns of patients with foot drop. We hypothesized that providing unilateral ankle dorsiflexion assistance during the swing phase would improve the kinematics and spatiotemporal gait parameters of such patients. Accordingly, this study aims to examine the efficacy of the proposed assistance system using a strategy for joint kinematics and spatiotemporal gait parameters (stride length, swing velocity, and stance phase ratio). The analysis results are expected to provide knowledge for better design and control of AFOs in patients with foot drop. METHOD Ten foot drop patients with hemiparesis (54.8 y ± 14.1 y) were fitted with a custom AFO with an adjustable calf brace and portable air compressor for ankle dorsiflexion assistance in the gait cycle during the swing phase. All subjects walked under two different conditions without extensive practice: (1) barefoot and (2) wearing a powered AFO. Under each condition, the patients walked back and forth on a 9-m track with ten laps of level ground under the supervision of licensed physical therapists. The lower-limb joint and trunk kinematics were acquired using 12 motion-capture cameras. RESULTS We found that kinematic asymmetry decreased in the three lower-limb joints after ankle dorsiflexion assistance during the swing phase. The average ankle-joint angle increased after using the AFO during the entire gait cycle. Similarly, the knee-joint angle showed a slight increase while using the AFO, leading to a significantly decreased standard deviation within patients. Conversely, the hip-joint angle showed no significant improvements with assistance. While several patients exhibited noticeably lower levels of asymmetry, no significant changes were observed in the average asymmetry of the swing velocity difference between the affected and unaffected sides while using the AFO. CONCLUSION We experimentally validated that ankle dorsiflexion assistance during the swing phase temporarily improves gait asymmetry in foot-drop patients. The experimental results also prove the efficacy of the developed AFO for gait assistance in foot-drop patients.
Collapse
Affiliation(s)
- Wonseok Shin
- AI·Robotics R&D Group, Korea Institute of Industrial Technology, Ansan, 15588, Republic of Korea
| | - Dongwoo Nam
- AI·Robotics R&D Group, Korea Institute of Industrial Technology, Ansan, 15588, Republic of Korea
- School of Korea Institute of Industry Technology, Robotics and Virtual Engineering, University of Science and Technology, Ansan, 15588, Republic of Korea
| | - Bummo Ahn
- AI·Robotics R&D Group, Korea Institute of Industrial Technology, Ansan, 15588, Republic of Korea
- School of Korea Institute of Industry Technology, Robotics and Virtual Engineering, University of Science and Technology, Ansan, 15588, Republic of Korea
| | - Sangjoon J Kim
- Henry Samueli School of Engineering Department of Mechanical and Aerospace Engineering, University of California, Irvine, 92697, USA
| | - Dong Yeon Lee
- Department of Orthopedic Surgery, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Suncheol Kwon
- AI·Robotics R&D Group, Korea Institute of Industrial Technology, Ansan, 15588, Republic of Korea.
| | - Jung Kim
- Department of Mechanical Engineing, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
4
|
Ang BWK, Yeow CH, Lim JH. A Critical Review on Factors Affecting the User Adoption of Wearable and Soft Robotics. SENSORS (BASEL, SWITZERLAND) 2023; 23:3263. [PMID: 36991974 PMCID: PMC10051244 DOI: 10.3390/s23063263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
In recent years, the advent of soft robotics has changed the landscape of wearable technologies. Soft robots are highly compliant and malleable, thus ensuring safe human-machine interactions. To date, a wide variety of actuation mechanisms have been studied and adopted into a multitude of soft wearables for use in clinical practice, such as assistive devices and rehabilitation modalities. Much research effort has been put into improving their technical performance and establishing the ideal indications for which rigid exoskeletons would play a limited role. However, despite having achieved many feats over the past decade, soft wearable technologies have not been extensively investigated from the perspective of user adoption. Most scholarly reviews of soft wearables have focused on the perspective of service providers such as developers, manufacturers, or clinicians, but few have scrutinized the factors affecting adoption and user experience. Hence, this would pose a good opportunity to gain insight into the current practice of soft robotics from a user's perspective. This review aims to provide a broad overview of the different types of soft wearables and identify the factors that hinder the adoption of soft robotics. In this paper, a systematic literature search using terms such as "soft", "robot", "wearable", and "exoskeleton" was conducted according to PRISMA guidelines to include peer-reviewed publications between 2012 and 2022. The soft robotics were classified according to their actuation mechanisms into motor-driven tendon cables, pneumatics, hydraulics, shape memory alloys, and polyvinyl chloride muscles, and their pros and cons were discussed. The identified factors affecting user adoption include design, availability of materials, durability, modeling and control, artificial intelligence augmentation, standardized evaluation criteria, public perception related to perceived utility, ease of use, and aesthetics. The critical areas for improvement and future research directions to increase adoption of soft wearables have also been highlighted.
Collapse
Affiliation(s)
- Benjamin Wee Keong Ang
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore; (B.W.K.A.); (C.-H.Y.)
| | - Chen-Hua Yeow
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore; (B.W.K.A.); (C.-H.Y.)
| | - Jeong Hoon Lim
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
- Division of Rehabilitation Medicine, University Medicine Cluster, National University Hospital, Singapore 119077, Singapore
| |
Collapse
|
5
|
Ahmadjou A, Sadeghi S, Zareinejad M, Talebi HA. A compact valveless pressure control source for soft rehabilitation glove. Int J Med Robot 2021; 17:e2298. [PMID: 34097353 DOI: 10.1002/rcs.2298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/24/2021] [Accepted: 06/03/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Soft pneumatic robots have shown great promises in hand rehabilitation systems as alternatives to conventional rigid systems. However, their application is limited to clinical rehabilitation programs due to their dependency on large-sized compressors as air suppliers. This disadvantage triggered the search for compact portable pneumatic sources. METHOD A compact valveless pneumatic source to control the bending angle of a soft actuator is proposed in this paper. The source incorporates two series of serially connected commercially available microcompressors to provide additional pressure and flowrate in two directions. In the proposed design, an inner-loop controller, controls the output characteristics of the source while an outer-loop controller handles the trajectory tracking of the angular position. RESULTS Experimental results show that the source is capable of providing up to 160 kPa of output. The controller is able to track up to 2 rad/sec sinusoidal trajectory with a maximum 0.066 rad root-mean-square error. CONCLUSION Experimental measurements showed satisfactory results in the maximum ratings and tracking errors whilst relatively low average power was consumed by eliminating control valves.
Collapse
Affiliation(s)
- Ahmadreza Ahmadjou
- Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Sajad Sadeghi
- Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Zareinejad
- New Technologies Research Center, Amirkabir University of Technology, Tehran, Iran
| | - Heidar Ali Talebi
- Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
6
|
Sridar S, Poddar S, Tong Y, Polygerinos P, Zhang W. Towards Untethered Soft Pneumatic Exosuits Using Low-Volume Inflatable Actuator Composites and a Portable Pneumatic Source. IEEE Robot Autom Lett 2020. [DOI: 10.1109/lra.2020.2986744] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Park J, Choi J, Kim SJ, Seo KH, Kim J. Design of an Inflatable Wrinkle Actuator With Fast Inflation/Deflation Responses for Wearable Suits. IEEE Robot Autom Lett 2020. [DOI: 10.1109/lra.2020.2976299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Kim SJ, Na Y, Lee DY, Chang H, Kim J. Pneumatic AFO Powered by a Miniature Custom Compressor for Drop Foot Correction. IEEE Trans Neural Syst Rehabil Eng 2020; 28:1781-1789. [PMID: 32746300 DOI: 10.1109/tnsre.2020.3003860] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
For active AFO applications, pneumatic remote transmission has advantages in minimizing the mass and complexity of the system due to the flexibility in placing pneumatic components and providing high back-drivability via simple valve control. However, pneumatic systems are generally tethered to large stationary air compressors, which greatly limit the practical daily usage. In this study, we implemented a wearable custom compressor that can be worn at the trunk of the body and can generate up to 1050 kPa of pressurized air to power an unilateral active AFO for dorsiflexion (DF) assistance of drop-foot patients. In order to minimize the size and weight of the custom compressor, the compression rate of the custom compressor was optimized to the rate of consumption required to power the active AFO. The finalized system can provide a maximum assistive torque of 9.8 Nm at a functional frequency of 1 Hz and the average resistive torque during free movement was 0.03 Nm. The system was tested for five hemiplegic drop-foot patients. The proposed system showed an average improvement of 12.3° of ankle peak dorsiflexion angle during the mid to late swing phase.
Collapse
|
9
|
Veale AJ, Staman K, van der Kooij H. Soft, Wearable, and Pleated Pneumatic Interference Actuator Provides Knee Extension Torque for Sit-to-Stand. Soft Robot 2020; 8:28-43. [PMID: 32364831 DOI: 10.1089/soro.2019.0076] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Soft wearable actuators can help connect machines and humans, providing a personalized, ergonomic, and cooperative physical interface between people and their world. Until now, the torque of these interfaces has been limited, restricting their ability to assist the completely paralyzed. This article presents a method for realizing a soft structure that stably and comfortably applies a knee extension torque to the body that is sufficient for sit-to-stand (STS). The structure, the pleated pneumatic interference actuator (PPIA), is based on pleated inflatables; is lightweight, collapsible, and clothing integratable; and generates torque from buckling of a constrained fabric-reinforced rubber tube. Multiple PPIAs were integrated into a soft orthosis, the soft lift assister for the knee (SLAK). The SLAK was inflated to a pressure of 320 kPa, and it produced a maximum 324 Nm torque at a flexion angle of 82°. This exceeds the peak 180 Nm torque required for STS and torques required for other everyday tasks. The SLAK met the torque requirement for STS, which is more than 93% of the STS motion when worn by a test leg. Worn by a human, it shows potential for complete support, which is more than 100% of the motion. The PPIA's theoretical model overestimated torque at low to moderate flexion angles and underestimated PPIA torque at high flexion angles. Further development of the PPIA will focus on testing the SLAK with human subjects; increasing the PPIA's speed and flexibility; reducing the PPIA's bulk; and improving the PPIA's model accuracy.
Collapse
Affiliation(s)
- Allan Joshua Veale
- Department of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands
| | - Kyrian Staman
- Department of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands
| | - Herman van der Kooij
- Department of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering (3mE), Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
10
|
Heo U, Kim SJ, Kim J. Backdrivable and Fully-Portable Pneumatic Back Support Exoskeleton for Lifting Assistance. IEEE Robot Autom Lett 2020. [DOI: 10.1109/lra.2020.2969169] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|