1
|
Gao W, Bai Y, Yang Y, Jia L, Mi Y, Cui W, Liu D, Shakoor A, Zhao L, Li J, Luo T, Sun D, Jiang Z. Intelligent sensing for the autonomous manipulation of microrobots toward minimally invasive cell surgery. APPLIED PHYSICS REVIEWS 2024; 11. [DOI: 10.1063/5.0211141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
The physiology and pathogenesis of biological cells have drawn enormous research interest. Benefiting from the rapid development of microfabrication and microelectronics, miniaturized robots with a tool size below micrometers have widely been studied for manipulating biological cells in vitro and in vivo. Traditionally, the complex physiological environment and biological fragility require human labor interference to fulfill these tasks, resulting in high risks of irreversible structural or functional damage and even clinical risk. Intelligent sensing devices and approaches have been recently integrated within robotic systems for environment visualization and interaction force control. As a consequence, microrobots can be autonomously manipulated with visual and interaction force feedback, greatly improving accuracy, efficiency, and damage regulation for minimally invasive cell surgery. This review first explores advanced tactile sensing in the aspects of sensing principles, design methodologies, and underlying physics. It also comprehensively discusses recent progress on visual sensing, where the imaging instruments and processing methods are summarized and analyzed. It then introduces autonomous micromanipulation practices utilizing visual and tactile sensing feedback and their corresponding applications in minimally invasive surgery. Finally, this work highlights and discusses the remaining challenges of current robotic micromanipulation and their future directions in clinical trials, providing valuable references about this field.
Collapse
Affiliation(s)
- Wendi Gao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Yunfei Bai
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Yujie Yang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Lanlan Jia
- Department of Electronic Engineering, Ocean University of China 2 , Qingdao 266400,
| | - Yingbiao Mi
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Wenji Cui
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Dehua Liu
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Adnan Shakoor
- Department of Control and Instrumentation Engineering, King Fahd University of Petroleum and Minerals 3 , Dhahran 31261,
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Junyang Li
- Department of Electronic Engineering, Ocean University of China 2 , Qingdao 266400,
| | - Tao Luo
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University 4 , Xiamen 361102,
| | - Dong Sun
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
- Department of Biomedical Engineering, City University of Hong Kong 5 , Hong Kong 999099,
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| |
Collapse
|
2
|
Shakoor A, Gao W, Zhao L, Jiang Z, Sun D. Advanced tools and methods for single-cell surgery. MICROSYSTEMS & NANOENGINEERING 2022; 8:47. [PMID: 35502330 PMCID: PMC9054775 DOI: 10.1038/s41378-022-00376-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Highly precise micromanipulation tools that can manipulate and interrogate cell organelles and components must be developed to support the rapid development of new cell-based medical therapies, thereby facilitating in-depth understanding of cell dynamics, cell component functions, and disease mechanisms. This paper presents a literature review on micro/nanomanipulation tools and their control methods for single-cell surgery. Micromanipulation methods specifically based on laser, microneedle, and untethered micro/nanotools are presented in detail. The limitations of these techniques are also discussed. The biological significance and clinical applications of single-cell surgery are also addressed in this paper.
Collapse
Affiliation(s)
- Adnan Shakoor
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Wendi Gao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, The School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, The School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, The School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Dong Sun
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, The School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
3
|
Sui C, He K, Lyu C, Liu YH. Accurate 3D Reconstruction of Dynamic Objects by Spatial-Temporal Multiplexing and Motion-Induced Error Elimination. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022; 31:2106-2121. [PMID: 35167454 DOI: 10.1109/tip.2022.3150297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Three-dimensional (3D) reconstruction of dynamic objects has broad applications, including object recognition and robotic manipulation. However, achieving high-accuracy reconstruction and robustness to motion simultaneously is a challenging task. In this paper, we present a novel method for 3D reconstruction of dynamic objectS, whose main features are as follows. Firstly, a structured-light multiplexing method is developed that only requires 3 patterns to achieve high-accuracy encoding. Fewer projected patterns require shorter image acquisition time, thus, the object motion is reduced in each reconstruction cycle. The three patterns, i.e. spatial-temporally encoded patterns, are generated by embedding a specifically designed spatial-coded texture map into the temporal-encoded three-step phase-shifting fringes. A temporal codeword and three spatial codewords are extracted from the composite patterns using a proposed extraction algorithm. The two types of codewords are utilized separately in stereo matching: the temporal codeword ensures the high accuracy, while the spatial codewords are responsible for removing phase ambiguity. Secondly, we aim to eliminate the reconstruction error induced by motion between frames abbreviated as motion induced error (MiE). Instead of assuming the object to be static when acquiring the 3 images, we derive the motion of projection pixels among frames. Using the extracted spatial codewords, correspondences between different frames are found, i.e. pixels with the same codewords are traceable in the image sequences. Therefore, we can obtain the phase map at each image-acquisition moment without being affected by the object motion. Then the object surfaces corresponding to all the images can be recovered. Experimental results validate the high reconstruction accuracy and precision of the proposed method for dynamic objects with different motion speeds. Comparative experiments show that the presented method demonstrates superior performance with various types of motion, including translation in different directions and deformation.
Collapse
|
4
|
Shakoor A, Wang B, Fan L, Kong L, Gao W, Sun J, Man K, Li G, Sun D. Automated Optical Tweezers Manipulation to Transfer Mitochondria from Fetal to Adult MSCs to Improve Antiaging Gene Expressions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103086. [PMID: 34411428 DOI: 10.1002/smll.202103086] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Mitochondrial dysfunction is considered to be an important factor that leads to aging and premature aging diseases. Transferring mitochondria to cells is an emerging and promising technique for the therapy of mitochondrial deoxyribonucleic acid (mtDNA)-related diseases. This paper presents a unique method of controlling the quality and quantity of mitochondria transferred to single cells using an automated optical tweezer-based micromanipulation system. The proposed method can automatically, accurately, and efficiently collect and transport healthy mitochondria to cells, and the recipient cells then take up the mitochondria through endocytosis. The results of the study reveal the possibility of using mitochondria from fetal mesenchymal stem cells (fMSCs) as a potential source to reverse the aging-related phenotype and improve metabolic activities in adult mesenchymal stem cells (aMSCs). The results of the quantitative polymerase chain reaction analysis show that the transfer of isolated mitochondria from fMSCs to a single aMSC can significantly increase the antiaging and metabolic gene expression in the aMSC. The proposed mitochondrial transfer method can greatly promote precision medicine for cell therapy of mtDNA-related diseases.
Collapse
Affiliation(s)
- Adnan Shakoor
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 99907, China
| | - Bin Wang
- The Chinese University of Hong Kong (CUHK), Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GDL) Advanced Institute for Regenerative Medicine, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510530, China
- Department of Orthopaedics and Traumatology, Stem Cells and Regeneration Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of, Hong Kong, 99907, Hong Kong S.A.R
| | - Lei Fan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 99907, China
| | - Lingchi Kong
- Department of Orthopaedics and Traumatology, Stem Cells and Regeneration Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of, Hong Kong, 99907, Hong Kong S.A.R
| | - Wendi Gao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 99907, China
| | - Jiayu Sun
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 99907, China
| | - Kwan Man
- Department of Surgery, The University of Hong Kong, Hong Kong, 99907, Hong Kong S.A.R
| | - Gang Li
- The Chinese University of Hong Kong (CUHK), Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GDL) Advanced Institute for Regenerative Medicine, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510530, China
- Department of Orthopaedics and Traumatology, Stem Cells and Regeneration Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of, Hong Kong, 99907, Hong Kong S.A.R
| | - Dong Sun
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 99907, China
| |
Collapse
|
5
|
Zhang Q, Shao Y, Li B, Wu Y, Dong J, Zhang D, Wang Y, Yan Y, Wang X, Pu Q, Guo G. Visually precise, low-damage, single-cell spatial manipulation with single-pixel resolution. Chem Sci 2021; 12:4111-4118. [PMID: 34163682 PMCID: PMC8179525 DOI: 10.1039/d0sc05534d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The analysis of single living cells, including intracellular delivery and extraction, is essential for monitoring their dynamic biochemical processes and exploring intracellular heterogeneity. However, owing to the 2D view in bright-field microscopy and optical distortions caused by the cell shape and the variation in the refractive index both inside and around the cells, achieving spatially undistorted imaging for high-precision manipulation within a cell is challenging. Here, an accurate and visual system is developed for single-cell spatial manipulation by correcting the aberration for simultaneous bright-field triple-view imaging. Stereo information from the triple view enables higher spatial resolution that facilitates the precise manipulation of single cells. In the bright field, we resolved the spatial locations of subcellular structures of a single cell suspended in a medium and measured the random spatial rotation angle of the cell with a precision of ±5°. Furthermore, we demonstrated the visual manipulation of a probe to an arbitrary spatial point of a cell with an accuracy of <1 pixel. This novel system is more accurate and less destructive for subcellular content extraction and drug delivery. We achieved the low-damage spatial puncture of single cells at specific visual points with an accuracy of <65 nm.![]()
Collapse
Affiliation(s)
- Qi Zhang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology Beijing 100124 China
| | - Yunlong Shao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology Beijing 100124 China
| | - Boye Li
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology Beijing 100124 China
| | - Yuanyuan Wu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology Beijing 100124 China
| | - Jingying Dong
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology Beijing 100124 China
| | - Dongtang Zhang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology Beijing 100124 China
| | - Yanan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology Beijing 100124 China
| | - Yong Yan
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology Beijing 100124 China
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology Beijing 100124 China
| | - Qiaosheng Pu
- Department of Chemistry, Lanzhou University Lanzhou Gansu 730000 China
| | - Guangsheng Guo
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology Beijing 100124 China
| |
Collapse
|