1
|
Yang Y, Zhang H, Kong K, Su H, Li J. Design and validation a minimally invasive robotic surgical instrument with decoupled pose and multi-DOF. J Robot Surg 2024; 18:312. [PMID: 39110315 DOI: 10.1007/s11701-024-02072-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/30/2024] [Indexed: 12/25/2024]
Abstract
High-performance miniature surgical instruments play an important role in complicated minimally invasive surgery (MIS). Based on in-depth analysis of the requirements of MIS and the characteristics of the existing minimally invasive surgical instruments, a multiple degrees of freedom (DOF) robotic surgical instrument with decoupled pose was proposed. Firstly, the design concept of the pose decoupling instrument was described in detail, and its physical structure, transmission structure, and mechanical properties were designed and analyzed. A surgical instrument control algorithm based on the master-slave mode was established. Finally, a physical prototype was developed, and its motion ranges of joints, load capacity, and suture operation performance were comprehensively evaluated, which confirmed the effectiveness of the proposed minimally invasive robotic surgical instrument.
Collapse
Affiliation(s)
- Yingkan Yang
- Tianjin WEGO Dr. Tech Medical Technology Co., Ltd, Tianjin, 300308, China
| | - Huaifeng Zhang
- Tianjin WEGO Dr. Tech Medical Technology Co., Ltd, Tianjin, 300308, China
| | - Kang Kong
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China.
| | - He Su
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Jianmin Li
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
2
|
Pittiglio G, Mencattelli M, Dupont PE. Magnetic Ball Chain Robots for Endoluminal Interventions. IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION : ICRA : [PROCEEDINGS]. IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION 2023; 2023:4717-4723. [PMID: 38444998 PMCID: PMC10910383 DOI: 10.1109/icra48891.2023.10160695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
This paper introduces a novel class of hyperredundant robots comprised of chains of permanently magnetized spheres enclosed in a cylindrical polymer skin. With their shape controlled using an externally-applied magnetic field, the spherical joints of these robots enable them to bend to very small radii of curvature. These robots can be used as steerable tips for endoluminal instruments. A kinematic model is derived based on minimizing magnetic and elastic potential energy. Simulation is used to demonstrate the enhanced steerability of these robots in comparison to magnetic soft continuum robots designed using either distributed or lumped magnetic material. Experiments are included to validate the model and to demonstrate the steering capability of ball chain robots in bifurcating channels.
Collapse
Affiliation(s)
- Giovanni Pittiglio
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Margherita Mencattelli
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pierre E Dupont
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Zhang J, Fang Q, Xiang P, Sun D, Xue Y, Jin R, Qiu K, Xiong R, Wang Y, Lu H. A Survey on Design, Actuation, Modeling, and Control of Continuum Robot. CYBORG AND BIONIC SYSTEMS 2022; 2022:9754697. [PMID: 38616914 PMCID: PMC11014731 DOI: 10.34133/2022/9754697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/27/2022] [Indexed: 04/16/2024] Open
Abstract
In this paper, we describe the advances in the design, actuation, modeling, and control field of continuum robots. After decades of pioneering research, many innovative structural design and actuation methods have arisen. Untethered magnetic robots are a good example; its external actuation characteristic allows for miniaturization, and they have gotten a lot of interest from academics. Furthermore, continuum robots with proprioceptive abilities are also studied. In modeling, modeling approaches based on continuum mechanics and geometric shaping hypothesis have made significant progress after years of research. Geometric exact continuum mechanics yields apparent computing efficiency via discrete modeling when combined with numerical analytic methods such that many effective model-based control methods have been realized. In the control, closed-loop and hybrid control methods offer great accuracy and resilience of motion control when combined with sensor feedback information. On the other hand, the advancement of machine learning has made modeling and control of continuum robots easier. The data-driven modeling technique simplifies modeling and improves anti-interference and generalization abilities. This paper discusses the current development and challenges of continuum robots in the above fields and provides prospects for the future.
Collapse
Affiliation(s)
- Jingyu Zhang
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, The Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qin Fang
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, The Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Pingyu Xiang
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, The Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Danying Sun
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, The Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yanan Xue
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, The Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou 310016, China
| | - Rui Jin
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, The Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ke Qiu
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, The Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Rong Xiong
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, The Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yue Wang
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, The Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Haojian Lu
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, The Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
4
|
Huang L, Liu B, Zhang L, Yin L. Equilibrium Conformation of a Novel Cable-Driven Snake-Arm Robot under External Loads. MICROMACHINES 2022; 13:mi13071149. [PMID: 35888966 PMCID: PMC9319917 DOI: 10.3390/mi13071149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023]
Abstract
Based on the anti-parallelogram mechanism, an approximate cylindrical rolling joint is proposed to develop a novel cable-driven snake-arm robot with multiple degrees of freedom (DOF). Furthermore, the kinematics of the cable-driven snake-arm robot are established, and the mapping between actuator space and joint space is simplified by bending decoupling motion in the multiple segments. The workspace and bending configurations of the robot are obtained. The static model is established by the principle of minimum potential energy. Furthermore, the simplified cable constraints in the static model are proposed through Taylor expansion, which facilitates the equilibrium conformation analysis of the robot under different external forces. The cable-driven snake-arm robot prototype is developed to verify the feasibility of the robot design and the availability of the static model through the experiments of the free bending motion and the external load on the robot.
Collapse
Affiliation(s)
- Long Huang
- School of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, China; (L.H.); (B.L.)
- Hunan Provincial Key Laboratory of Intelligent Manufacturing Technology for High-Performance Mechanical Equipment, Changsha University of Science and Technology, Changsha 410114, China
| | - Bei Liu
- School of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, China; (L.H.); (B.L.)
| | - Leiyu Zhang
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100022, China;
| | - Lairong Yin
- School of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, China; (L.H.); (B.L.)
- Correspondence:
| |
Collapse
|
5
|
Abstract
Although substantial advancements have been achieved in robot-assisted surgery, the blueprint to existing snake robotics predominantly focuses on the preliminary structural design, control, and human–robot interfaces, with features which have not been particularly explored in the literature. This paper aims to conduct a review of planning and operation concepts of hyper-redundant serpentine robots for surgical use, as well as any future challenges and solutions for better manipulation. Current researchers in the field of the manufacture and navigation of snake robots have faced issues, such as a low dexterity of the end-effectors around delicate organs, state estimation and the lack of depth perception on two-dimensional screens. A wide range of robots have been analysed, such as the i²Snake robot, inspiring the use of force and position feedback, visual servoing and augmented reality (AR). We present the types of actuation methods, robot kinematics, dynamics, sensing, and prospects of AR integration in snake robots, whilst addressing their shortcomings to facilitate the surgeon’s task. For a smoother gait control, validation and optimization algorithms such as deep learning databases are examined to mitigate redundancy in module linkage backlash and accidental self-collision. In essence, we aim to provide an outlook on robot configurations during motion by enhancing their material compositions within anatomical biocompatibility standards.
Collapse
|
6
|
Kong Y, Song S, Zhang N, Wang J, Li B. Design and Kinematic Modeling of In-Situ Torsionally-Steerable Flexible Surgical Robots. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3142920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
7
|
Takata A, Nabae H, Suzumori K, Endo G. Tension Control Method Utilizing Antagonistic Tension to Enlarge the Workspace of Coupled Tendon-Driven Articulated Manipulator. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2021.3094489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Mitros Z, Thamo B, Bergeles C, da Cruz L, Dhaliwal K, Khadem M. Design and Modelling of a Continuum Robot for Distal Lung Sampling in Mechanically Ventilated Patients in Critical Care. Front Robot AI 2021; 8:611866. [PMID: 34012980 PMCID: PMC8126695 DOI: 10.3389/frobt.2021.611866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/24/2021] [Indexed: 12/02/2022] Open
Abstract
In this paper, we design and develop a novel robotic bronchoscope for sampling of the distal lung in mechanically-ventilated (MV) patients in critical care units. Despite the high cost and attributable morbidity and mortality of MV patients with pneumonia which approaches 40%, sampling of the distal lung in MV patients suffering from range of lung diseases such as Covid-19 is not standardised, lacks reproducibility and requires expert operators. We propose a robotic bronchoscope that enables repeatable sampling and guidance to distal lung pathologies by overcoming significant challenges that are encountered whilst performing bronchoscopy in MV patients, namely, limited dexterity, large size of the bronchoscope obstructing ventilation, and poor anatomical registration. We have developed a robotic bronchoscope with 7 Degrees of Freedom (DoFs), an outer diameter of 4.5 mm and inner working channel of 2 mm. The prototype is a push/pull actuated continuum robot capable of dexterous manipulation inside the lung and visualisation/sampling of the distal airways. A prototype of the robot is engineered and a mechanics-based model of the robotic bronchoscope is developed. Furthermore, we develop a novel numerical solver that improves the computational efficiency of the model and facilitates the deployment of the robot. Experiments are performed to verify the design and evaluate accuracy and computational cost of the model. Results demonstrate that the model can predict the shape of the robot in <0.011s with a mean error of 1.76 cm, enabling the future deployment of a robotic bronchoscope in MV patients.
Collapse
Affiliation(s)
- Zisos Mitros
- Robotics and Vision in Medicine (RViM) Lab, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, United Kingdom
| | - Balint Thamo
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Christos Bergeles
- Robotics and Vision in Medicine (RViM) Lab, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Lyndon da Cruz
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, United Kingdom
| | - Kevin Dhaliwal
- Translational Healthcare Technologies Group in the Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Mohsen Khadem
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
- Translational Healthcare Technologies Group in the Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Review of surgical robotic systems for keyhole and endoscopic procedures: state of the art and perspectives. Front Med 2020; 14:382-403. [DOI: 10.1007/s11684-020-0781-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/05/2020] [Indexed: 02/06/2023]
|
10
|
Sun Y, Liu Y, Xu L, Zou Y, Faragasso A, Lueth TC. Automatic Design of Compliant Surgical Forceps With Adaptive Grasping Functions. IEEE Robot Autom Lett 2020. [DOI: 10.1109/lra.2020.2967715] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|