1
|
Lechien JR, Chiesa-Estomba CM, Hans S. Practical considerations for choosing transoral laser microsurgery versus transoral robotic surgery for supraglottic laryngeal cancers. Curr Opin Otolaryngol Head Neck Surg 2025; 33:92-101. [PMID: 39903652 DOI: 10.1097/moo.0000000000001028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
PURPOSE OF REVIEW To review the pros and cons of treating supraglottic laryngeal cancer with transoral laser microsurgery (TOLM) or transoral robotic surgery (TORS). RECENT FINDINGS The use of TORS is limited by the cost and the availability of the robots despite a faster learning curve than TOLM. The laryngeal exposure difficulty, the use of long instruments, and the restricted view of the surgical field consist of the primary limitations of TOLM, which are addressed in TORS technology through a 30° view of surgical fields, and the 180° amplitude of the instruments. The indications of TOLM and TORS are similar and include cT1-T2 and some selected cT3 with moderate invasion of the preepiglottic space. The rates of positive margins in TORS-SGL are lower than those of TOLM-supraglottic laryngectomy (SGL), while both approaches report similar duration of hospital stays. Patients treated with TORS report higher rates of percutaneous gastrostomy and temporary tracheotomy compared to TOLM. The feeding tube and oral diet re-start appear comparable between both groups. The overall survival, disease-free survival, local, regional, and relapse-free survival rates of TORS are reported to be higher than those found for TOLM SGL. SUMMARY TORS and TOLM SGL are well tolerated and effective approaches for cT1, cT2, and some selected cT3 LSCC. The functional and surgical outcomes appear comparable. TORS could have superior survival and loco-regional outcomes than TOLM, which could be attributed to the fastest TORS learning curve, and its superiority in terms of tumor/operating field visualization, and instrument movements.
Collapse
Affiliation(s)
- Jerome R Lechien
- Research and Robotic Study Groups of Young-Otolaryngologists of the International Federations of Oto-rhino-laryngological Societies (YO-IFOS), Paris, France
- Department of Surgery, Mons School of Medicine, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMons), Mons
- Division of Laryngology & Broncho-esophagology, Department of Otolaryngology-Head and Neck Surgery, EpiCURA Hospital, University of Mons, Baudour, Belgium
- Department of Otolaryngology-Head and Neck Surgery, Polyclinic de l'Atlantique, Poitiers
- Department of Otolaryngology-Head and Neck Surgery, Foch Hospital, Paris Saclay University, Paris, France
| | - Carlos M Chiesa-Estomba
- Research and Robotic Study Groups of Young-Otolaryngologists of the International Federations of Oto-rhino-laryngological Societies (YO-IFOS), Paris, France
- Department of Otorhinolaryngology-Head and Neck Surgery, Donostia University Hospital Donosti-San, Sebastián, Spain
| | - Stéphane Hans
- Research and Robotic Study Groups of Young-Otolaryngologists of the International Federations of Oto-rhino-laryngological Societies (YO-IFOS), Paris, France
- Department of Otolaryngology-Head and Neck Surgery, Foch Hospital, Paris Saclay University, Paris, France
| |
Collapse
|
2
|
Sriram S, Creighton FX, Galaiya D. Autonomous Robotic Systems in Otolaryngology-Head and Neck Surgery. Otolaryngol Clin North Am 2024; 57:767-779. [PMID: 38971627 DOI: 10.1016/j.otc.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Robotic surgery is a growing field with increasing applications to patient care. With the rising use of artificial intelligence (AI), a new frontier emerges, allowing semiautonomous robotics. This article reviews the origins of robotic surgery and subsequent trials of automaticity in all fields. It then describes specific nascent robotic and semiautonomous surgical prototypes within the field of otolaryngology. Finally, broader systemic considerations are posited regarding the implementation of AI-driven robotics in surgery.
Collapse
Affiliation(s)
- Shreya Sriram
- Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Francis X Creighton
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Deepa Galaiya
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Hospital, Baltimore, MD, USA.
| |
Collapse
|
3
|
Chen Z, Marzullo A, Alberti D, Lievore E, Fontana M, De Cobelli O, Musi G, Ferrigno G, De Momi E. FRSR: Framework for real-time scene reconstruction in robot-assisted minimally invasive surgery. Comput Biol Med 2023; 163:107121. [PMID: 37311383 DOI: 10.1016/j.compbiomed.2023.107121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
3D reconstruction of the intra-operative scenes provides precise position information which is the foundation of various safety related applications in robot-assisted surgery, such as augmented reality. Herein, a framework integrated into a known surgical system is proposed to enhance the safety of robotic surgery. In this paper, we present a scene reconstruction framework to restore the 3D information of the surgical site in real time. In particular, a lightweight encoder-decoder network is designed to perform disparity estimation, which is the key component of the scene reconstruction framework. The stereo endoscope of da Vinci Research Kit (dVRK) is adopted to explore the feasibility of the proposed approach, and it provides the possibility for the migration to other Robot Operating System (ROS) based robot platforms due to the strong independence on hardware. The framework is evaluated using three different scenarios, including a public dataset (3018 pairs of endoscopic images), the scene from the dVRK endoscope in our lab as well as a self-made clinical dataset captured from an oncology hospital. Experimental results show that the proposed framework can reconstruct 3D surgical scenes in real time (25 FPS), and achieve high accuracy (2.69 ± 1.48 mm in MAE, 5.47 ± 1.34 mm in RMSE and 0.41 ± 0.23 in SRE, respectively). It demonstrates that our framework can reconstruct intra-operative scenes with high reliability of both accuracy and speed, and the validation of clinical data also shows its potential in surgery. This work enhances the state of art in 3D intra-operative scene reconstruction based on medical robot platforms. The clinical dataset has been released to promote the development of scene reconstruction in the medical image community.
Collapse
Affiliation(s)
- Ziyang Chen
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, 20133, Italy.
| | - Aldo Marzullo
- Department of Mathematics and Computer Science, University of Calabria, Rende, 87036, Italy
| | - Davide Alberti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, 20133, Italy
| | - Elena Lievore
- Department of Urology, European Institute of Oncology, IRCCS, Milan, 20141, Italy
| | - Matteo Fontana
- Department of Urology, European Institute of Oncology, IRCCS, Milan, 20141, Italy
| | - Ottavio De Cobelli
- Department of Urology, European Institute of Oncology, IRCCS, Milan, 20141, Italy; Department of Oncology and Onco-haematology, Faculty of Medicine and Surgery, University of Milan, Milan, 20122, Italy
| | - Gennaro Musi
- Department of Urology, European Institute of Oncology, IRCCS, Milan, 20141, Italy; Department of Oncology and Onco-haematology, Faculty of Medicine and Surgery, University of Milan, Milan, 20122, Italy
| | - Giancarlo Ferrigno
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, 20133, Italy
| | - Elena De Momi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, 20133, Italy; Department of Urology, European Institute of Oncology, IRCCS, Milan, 20141, Italy
| |
Collapse
|
4
|
Chen Z, Terlizzi S, Da Col T, Marzullo A, Catellani M, Ferrigno G, De Momi E. Robot-assisted ex vivo neobladder reconstruction: preliminary results of surgical skill evaluation. Int J Comput Assist Radiol Surg 2022; 17:2315-2323. [PMID: 35802223 DOI: 10.1007/s11548-022-02712-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/24/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE Advanced developments in the medical field have gradually increased the public demand for surgical skill evaluation. However, this assessment always depends on the direct observation of experienced surgeons, which is time-consuming and variable. The introduction of robot-assisted surgery provides a new possibility for this evaluation paradigm. This paper aims at evaluating surgeon performance automatically with novel evaluation metrics based on different surgical data. METHODS Urologists ([Formula: see text]) from a hospital were requested to perform a simplified neobladder reconstruction on an ex vivo setup twice with different camera modalities ([Formula: see text]) randomly. They were divided into novices and experts ([Formula: see text], respectively) according to their experience in robot-assisted surgeries. Different performance metrics ([Formula: see text]) are proposed to achieve the surgical skill evaluation, considering both instruments and endoscope. Also, nonparametric tests are adopted to check if there are significant differences when evaluating surgeons performance. RESULTS When grouping according to four stages of neobladder reconstruction, statistically significant differences can be appreciated in phase 1 ([Formula: see text]) and phase 2 ([Formula: see text]) with normalized time-related metrics and camera movement-related metrics, respectively. On the other hand, considering experience grouping shows that both metrics are able to highlight statistically significant differences between novice and expert performances in the control protocol. It also shows that the camera-related performance of experts is significantly different ([Formula: see text]) when handling the endoscope manually and when it is automatic. CONCLUSION Surgical skill evaluation, using the approach in this paper, can effectively measure surgical procedures of surgeons with different experience. Preliminary results demonstrate that different surgical data can be fully utilized to improve the reliability of surgical evaluation. It also demonstrates its versatility and potential in the quantitative assessment of various surgical operations.
Collapse
Affiliation(s)
- Ziyang Chen
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.
| | - Serenella Terlizzi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Tommaso Da Col
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Aldo Marzullo
- Department of Mathematics and Computer Science, University of Calabria, Rende, Italy
| | | | - Giancarlo Ferrigno
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Elena De Momi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
5
|
Gruijthuijsen C, Garcia-Peraza-Herrera LC, Borghesan G, Reynaerts D, Deprest J, Ourselin S, Vercauteren T, Vander Poorten E. Robotic Endoscope Control Via Autonomous Instrument Tracking. Front Robot AI 2022; 9:832208. [PMID: 35480090 PMCID: PMC9035496 DOI: 10.3389/frobt.2022.832208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Many keyhole interventions rely on bi-manual handling of surgical instruments, forcing the main surgeon to rely on a second surgeon to act as a camera assistant. In addition to the burden of excessively involving surgical staff, this may lead to reduced image stability, increased task completion time and sometimes errors due to the monotony of the task. Robotic endoscope holders, controlled by a set of basic instructions, have been proposed as an alternative, but their unnatural handling may increase the cognitive load of the (solo) surgeon, which hinders their clinical acceptance. More seamless integration in the surgical workflow would be achieved if robotic endoscope holders collaborated with the operating surgeon via semantically rich instructions that closely resemble instructions that would otherwise be issued to a human camera assistant, such as "focus on my right-hand instrument." As a proof of concept, this paper presents a novel system that paves the way towards a synergistic interaction between surgeons and robotic endoscope holders. The proposed platform allows the surgeon to perform a bimanual coordination and navigation task, while a robotic arm autonomously performs the endoscope positioning tasks. Within our system, we propose a novel tooltip localization method based on surgical tool segmentation and a novel visual servoing approach that ensures smooth and appropriate motion of the endoscope camera. We validate our vision pipeline and run a user study of this system. The clinical relevance of the study is ensured through the use of a laparoscopic exercise validated by the European Academy of Gynaecological Surgery which involves bi-manual coordination and navigation. Successful application of our proposed system provides a promising starting point towards broader clinical adoption of robotic endoscope holders.
Collapse
Affiliation(s)
| | - Luis C. Garcia-Peraza-Herrera
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Department of Surgical and Interventional Engineering, King’s College London, London, United Kingdom
| | - Gianni Borghesan
- Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
- Core Lab ROB, Flanders Make, Lommel, Belgium
| | | | - Jan Deprest
- Department of Development and Regeneration, Division Woman and Child, KU Leuven, Leuven, Belgium
| | - Sebastien Ourselin
- Department of Surgical and Interventional Engineering, King’s College London, London, United Kingdom
| | - Tom Vercauteren
- Department of Surgical and Interventional Engineering, King’s College London, London, United Kingdom
| | | |
Collapse
|
6
|
Da Col T, Caccianiga G, Catellani M, Mariani A, Ferro M, Cordima G, De Momi E, Ferrigno G, de Cobelli O. Automating Endoscope Motion in Robotic Surgery: A Usability Study on da Vinci-Assisted Ex Vivo Neobladder Reconstruction. Front Robot AI 2021; 8:707704. [PMID: 34901168 PMCID: PMC8656430 DOI: 10.3389/frobt.2021.707704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
Robots for minimally invasive surgery introduce many advantages, but still require the surgeon to alternatively control the surgical instruments and the endoscope. This work aims at providing autonomous navigation of the endoscope during a surgical procedure. The autonomous endoscope motion was based on kinematic tracking of the surgical instruments and integrated with the da Vinci Research Kit. A preclinical usability study was conducted by 10 urologists. They carried out an ex vivo orthotopic neobladder reconstruction twice, using both traditional and autonomous endoscope control. The usability of the system was tested by asking participants to fill standard system usability scales. Moreover, the effectiveness of the method was assessed by analyzing the total procedure time and the time spent with the instruments out of the field of view. The average system usability score overcame the threshold usually identified as the limit to assess good usability (average score = 73.25 > 68). The average total procedure time with the autonomous endoscope navigation was comparable with the classic control (p = 0.85 > 0.05), yet it significantly reduced the time out of the field of view (p = 0.022 < 0.05). Based on our findings, the autonomous endoscope improves the usability of the surgical system, and it has the potential to be an additional and customizable tool for the surgeon that can always take control of the endoscope or leave it to move autonomously.
Collapse
Affiliation(s)
- Tommaso Da Col
- Neuro-Engineering and Medical Robotics Laboratory (NEARLab), Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Guido Caccianiga
- Haptic Intelligence Department, Max-Planck-Institute for Intelligent Systems, Stuttgart, Germany
| | - Michele Catellani
- Division of Urology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Andrea Mariani
- Excellence in Robotics and AI Department, Sant’Anna School of Advanced Studies, Pisa, Italy
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Giovanni Cordima
- Division of Urology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Elena De Momi
- Neuro-Engineering and Medical Robotics Laboratory (NEARLab), Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Giancarlo Ferrigno
- Neuro-Engineering and Medical Robotics Laboratory (NEARLab), Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Ottavio de Cobelli
- Division of Urology, European Institute of Oncology, IRCCS, Milan, Italy
| |
Collapse
|
7
|
Huber M, Mitchell JB, Henry R, Ourselin S, Vercauteren T, Bergeles C. Homography-based Visual Servoing with Remote Center of Motion for Semi-autonomous Robotic Endoscope Manipulation. ... INTERNATIONAL SYMPOSIUM ON MEDICAL ROBOTICS. INTERNATIONAL SYMPOSIUM ON MEDICAL ROBOTICS 2021; 220:1-7. [PMID: 39351396 PMCID: PMC7616652 DOI: 10.1109/ismr48346.2021.9661563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The dominant visual servoing approaches in Minimally Invasive Surgery (MIS) follow single points or adapt the endoscope's field of view based on the surgical tools' distance. These methods rely on point positions with respect to the camera frame to infer a control policy. Deviating from the dominant methods, we formulate a robotic controller that allows for image-based visual servoing that requires neither explicit tool and camera positions nor any explicit image depth information. The proposed method relies on homography-based image registration, which changes the automation paradigm from point-centric towards surgical-scene-centric approach. It simultaneously respects a programmable Remote Center of Motion (RCM). Our approach allows a surgeon to build a graph of desired views, from which, once built, views can be manually selected and automatically servoed to irrespective of robot-patient frame transformation changes. We evaluate our method on an abdominal phantom and provide an open source ROS Moveit integration for use with any serial manipulator. A video is provided.
Collapse
Affiliation(s)
- Martin Huber
- School of Biomedical Engineering & Image Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - John Bason Mitchell
- School of Biomedical Engineering & Image Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
- Department of Medical Physics and Biomedical Engineering, Faculty of Engineering Sciences, University College London, London, United Kingdom
| | - Ross Henry
- School of Biomedical Engineering & Image Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Sébastien Ourselin
- School of Biomedical Engineering & Image Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Tom Vercauteren
- School of Biomedical Engineering & Image Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Christos Bergeles
- School of Biomedical Engineering & Image Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| |
Collapse
|
8
|
Abstract
The advent of telerobotic systems has revolutionized various aspects of the industry and human life. This technology is designed to augment human sensorimotor capabilities to extend them beyond natural competence. Classic examples are space and underwater applications when distance and access are the two major physical barriers to be combated with this technology. In modern examples, telerobotic systems have been used in several clinical applications, including teleoperated surgery and telerehabilitation. In this regard, there has been a significant amount of research and development due to the major benefits in terms of medical outcomes. Recently telerobotic systems are combined with advanced artificial intelligence modules to better share the agency with the operator and open new doors of medical automation. In this review paper, we have provided a comprehensive analysis of the literature considering various topologies of telerobotic systems in the medical domain while shedding light on different levels of autonomy for this technology, starting from direct control, going up to command-tracking autonomous telerobots. Existing challenges, including instrumentation, transparency, autonomy, stochastic communication delays, and stability, in addition to the current direction of research related to benefit in telemedicine and medical automation, and future vision of this technology, are discussed in this review paper.
Collapse
|