1
|
Wilcox S, Sengupta S, Huang C, Tokuda J, Lu A, Woodrum D, Chen Y. Development of a Low-Profile, Piezoelectric Robot for MR-Guided Abdominal Needle Interventions. Ann Biomed Eng 2025:10.1007/s10439-025-03719-w. [PMID: 40266438 DOI: 10.1007/s10439-025-03719-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/25/2025] [Indexed: 04/24/2025]
Abstract
PURPOSE Minimally invasive needle-based interventions are commonly used in cancer diagnosis and treatment, including procedures, such as biopsy, brachytherapy, and microwave ablation. Although MR-guided needle placement offers several distinct advantages, such as high-resolution target visualization and accurate device tracking, one of the primary limitations that affect its widespread adoption is the ergonomic constraints of the closed-bore MRI environment, requiring the patients to be frequently moved in and out to perform the needle-based procedures. This paper introduces a low-profile, body-mounted, MR-guided robot designed to address this limitation by streamlining the operation workflow and enabling accurate needle placement within the MRI scanner. METHODS The robot employs piezoelectric linear actuators and stacked Cartesian XY stages to precisely control the position and orientation of a needle guide. A kinematic model and control framework was developed to facilitate accurate targeting. Additionally, clinical workflow for the liver interventions was developed to demonstrate the robot's capability to replicate existing procedures. The proposed system was validated in benchtop environment and 3T MRI scanner to quantify the system performance. RESULTS Experimental validations conducted in free space demonstrated a position accuracy of 2.38 ± 0.94 mm and orientation error of 1.40 ± 2.89°. Additional tests to confirm MR-conditionality and MR-guided phantom placements were carried out to assess the system's performance and safety in MRI suite, yielding a position error of 2.01 ± 0.77 mm and an orientation error of 1.57 ± 1.31°. CONCLUSION The presented robot shows exceptional compatibility with a wide range of patients and bore sizes while maintaining clinically significant accuracy. Future work will focus on the validations in dynamic liver environments.
Collapse
Affiliation(s)
- Samuel Wilcox
- Institute of Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, 30332, USA
| | - Saikat Sengupta
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Chuan Huang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Junichi Tokuda
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Aiming Lu
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - David Woodrum
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yue Chen
- Institute of Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, 30332, USA.
| |
Collapse
|
2
|
Wardhana G, Fütterer JJ, Abayazid M. IRE made easy: introducing the robotic grid system for multiple parallel needle insertion in irreversible electroporation treatment. Int J Comput Assist Radiol Surg 2024; 19:1517-1526. [PMID: 38896406 PMCID: PMC11329412 DOI: 10.1007/s11548-024-03216-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE Accurate needle placement is crucial for successful tumor treatment using the irreversible electroporation (IRE) method. Multiple needles are inserted around the tumor, ideally in parallel, to achieve uniform electric field distribution. This paper presents a robot utilizing a grid system to enable multiple needles insertion while maintaining parallelism between them. METHODS The robotic system has two degrees of freedom, which allow for the adjustment of the grid system to accommodate targeting lesions in various positions. The robot's performance was evaluated by testing its accuracy across various configurations and target depth locations, as well as its ability to maintain the needle parallelism. RESULTS The robot has dimensions of ϕ 134 mm and a height of 46 mm, with a total weight of 295 g. The system accuracy test showed that the robot can precisely target points across different target depths and needle orientations, with an average error of 2.71 ± 0.68 mm. Moreover, multiple insertions at different grid locations reveal needle orientation deviations typically below 1 ∘ . CONCLUSION This study presented the design and validation of a robotic grid system. The robot is capable of maintaining insertion accuracy and needle parallelism during multiple needle insertions at various robot configurations. The robot showed promising results with limited needle deviation, making it suitable for IRE procedures.
Collapse
Affiliation(s)
- Girindra Wardhana
- Robotics and Mechatronics Lab (RAM), TechMed Centre, University of Twente, Hallenweg 15, Enschede, 7500 NH, Overijssel, The Netherlands.
| | - Jurgen J Fütterer
- Robotics and Mechatronics Lab (RAM), TechMed Centre, University of Twente, Hallenweg 15, Enschede, 7500 NH, Overijssel, The Netherlands
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, Gelderland, The Netherlands
| | - Momen Abayazid
- Robotics and Mechatronics Lab (RAM), TechMed Centre, University of Twente, Hallenweg 15, Enschede, 7500 NH, Overijssel, The Netherlands
| |
Collapse
|
3
|
He Z, Dai J, Ho JD, Tong H, Wang X, Fang G, Liang L, Cheung C, Guo Z, Chang H, Iordachita I, Taylor RH, Poon W, Chan DT, Kwok K. Interactive Multi-Stage Robotic Positioner for Intra-Operative MRI-Guided Stereotactic Neurosurgery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305495. [PMID: 38072667 PMCID: PMC10870025 DOI: 10.1002/advs.202305495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/30/2023] [Indexed: 02/17/2024]
Abstract
Magnetic resonance imaging (MRI) demonstrates clear advantages over other imaging modalities in neurosurgery with its ability to delineate critical neurovascular structures and cancerous tissue in high-resolution 3D anatomical roadmaps. However, its application has been limited to interventions performed based on static pre/post-operative imaging, where errors accrue from stereotactic frame setup, image registration, and brain shift. To leverage the powerful intra-operative functions of MRI, e.g., instrument tracking, monitoring of physiological changes and tissue temperature in MRI-guided bilateral stereotactic neurosurgery, a multi-stage robotic positioner is proposed. The system positions cannula/needle instruments using a lightweight (203 g) and compact (Ø97 × 81 mm) skull-mounted structure that fits within most standard imaging head coils. With optimized design in soft robotics, the system operates in two stages: i) manual coarse adjustment performed interactively by the surgeon (workspace of ±30°), ii) automatic fine adjustment with precise (<0.2° orientation error), responsive (1.4 Hz bandwidth), and high-resolution (0.058°) soft robotic positioning. Orientation locking provides sufficient transmission stiffness (4.07 N/mm) for instrument advancement. The system's clinical workflow and accuracy is validated with lab-based (<0.8 mm) and MRI-based testing on skull phantoms (<1.7 mm) and a cadaver subject (<2.2 mm). Custom-made wireless omni-directional tracking markers facilitated robot registration under MRI.
Collapse
Affiliation(s)
- Zhuoliang He
- Department of Mechanical EngineeringThe University of Hong KongHong Kong999077China
| | - Jing Dai
- Department of Mechanical EngineeringThe University of Hong KongHong Kong999077China
| | - Justin Di‐Lang Ho
- Department of Mechanical EngineeringThe University of Hong KongHong Kong999077China
| | - Hon‐Sing Tong
- Department of Mechanical EngineeringThe University of Hong KongHong Kong999077China
| | - Xiaomei Wang
- Department of Mechanical EngineeringThe University of Hong KongHong Kong999077China
- Multi‐Scale Medical Robotics CenterHong Kong999077China
| | - Ge Fang
- Department of Mechanical EngineeringThe University of Hong KongHong Kong999077China
| | - Liyuan Liang
- Department of Biomedical EngineeringThe Chinese University of Hong KongHong Kong999077China
- Multi‐Scale Medical Robotics CenterHong Kong999077China
| | - Chim‐Lee Cheung
- Department of Mechanical EngineeringThe University of Hong KongHong Kong999077China
| | - Ziyan Guo
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonWC1E 6BTUK
- Wellcome/EPSRC Centre for Interventional and Surgical SciencesUniversity College LondonLondonWC1E 6BTUK
| | - Hing‐Chiu Chang
- Department of Biomedical EngineeringThe Chinese University of Hong KongHong Kong999077China
- Multi‐Scale Medical Robotics CenterHong Kong999077China
| | - Iulian Iordachita
- Department of Mechanical Engineering and Laboratory for Computational Sensing and RoboticsJohns Hopkins UniversityBaltimoreMD 21218USA
| | - Russell H. Taylor
- Department of Computer Science and Laboratory for Computational Sensing and RoboticsJohns Hopkins UniversityBaltimoreMD 21218USA
| | - Wai‐Sang Poon
- Division of NeurosurgeryDepartment of SurgeryPrince of Wales HospitalThe Chinese University of Hong KongHong Kong999077China
- Neuromedicine CenterShenzhen Hospital, The University of Hong KongShenzhen518053China
| | - Danny Tat‐Ming Chan
- Division of NeurosurgeryDepartment of SurgeryPrince of Wales HospitalThe Chinese University of Hong KongHong Kong999077China
- Multi‐Scale Medical Robotics CenterHong Kong999077China
| | - Ka‐Wai Kwok
- Department of Mechanical EngineeringThe University of Hong KongHong Kong999077China
- Multi‐Scale Medical Robotics CenterHong Kong999077China
| |
Collapse
|
4
|
Cheung CL, Wu M, Fang G, Ho JDL, Liang L, Tan KV, Lin FH, Chang HC, Kwok KW. Omnidirectional Monolithic Marker for Intra-Operative MR-Based Positional Sensing in Closed MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:439-448. [PMID: 37647176 DOI: 10.1109/tmi.2023.3309967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
We present a design of an inductively coupled radio frequency (ICRF) marker for magnetic resonance (MR)-based positional tracking, enabling the robust increase of tracking signal at all scanning orientations in quadrature-excited closed MR imaging (MRI). The marker employs three curved resonant circuits fully covering a cylindrical surface that encloses the signal source. Each resonant circuit is a planar spiral inductor with parallel plate capacitors fabricated monolithically on flexible printed circuit board (FPC) and bent to achieve the curved structure. Size of the constructed marker is Ø3-mm ×5 -mm with quality factor > 22, and its tracking performance was validated with 1.5 T MRI scanner. As result, the marker remains as a high positive contrast spot under 360° rotations in 3 axes. The marker can be accurately localized with a maximum error of 0.56 mm under a displacement of 56 mm from the isocenter, along with an inherent standard deviation of 0.1-mm. Accrediting to the high image contrast, the presented marker enables automatic and real-time tracking in 3D without dependency on its orientation with respect to the MRI scanner receive coil. In combination with its small form-factor, the presented marker would facilitate robust and wireless MR-based tracking for intervention and clinical diagnosis. This method targets applications that can involve rotational changes in all axes (X-Y-Z).
Collapse
|
5
|
Zhang J, Han M. Editorial for the Special Issue on Flexible Sensors and Actuators for Biomedicine. MICROMACHINES 2023; 14:2184. [PMID: 38138352 PMCID: PMC10745382 DOI: 10.3390/mi14122184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023]
Abstract
Flexible sensors and actuators typically rely on functional materials with low Young's moduli or ultrathin geometries [...].
Collapse
Affiliation(s)
| | - Mengdi Han
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China;
| |
Collapse
|
6
|
Cheng K, Li L, Du Y, Wang J, Chen Z, Liu J, Zhang X, Dong L, Shen Y, Yang Z. A systematic review of image-guided, surgical robot-assisted percutaneous puncture: Challenges and benefits. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:8375-8399. [PMID: 37161203 DOI: 10.3934/mbe.2023367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Percutaneous puncture is a common medical procedure that involves accessing an internal organ or tissue through the skin. Image guidance and surgical robots have been increasingly used to assist with percutaneous procedures, but the challenges and benefits of these technologies have not been thoroughly explored. The aims of this systematic review are to furnish an overview of the challenges and benefits of image-guided, surgical robot-assisted percutaneous puncture and to provide evidence on this approach. We searched several electronic databases for studies on image-guided, surgical robot-assisted percutaneous punctures published between January 2018 and December 2022. The final analysis refers to 53 studies in total. The results of this review suggest that image guidance and surgical robots can improve the accuracy and precision of percutaneous procedures, decrease radiation exposure to patients and medical personnel and lower the risk of complications. However, there are many challenges related to the use of these technologies, such as the integration of the robot and operating room, immature robotic perception, and deviation of needle insertion. In conclusion, image-guided, surgical robot-assisted percutaneous puncture offers many potential benefits, but further research is needed to fully understand the challenges and optimize the utilization of these technologies in clinical practice.
Collapse
Affiliation(s)
- Kai Cheng
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, China
| | - Lixia Li
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, China
| | - Yanmin Du
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, China
| | - Jiangtao Wang
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, China
| | - Zhenghua Chen
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, China
| | - Jian Liu
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, China
| | - Xiangsheng Zhang
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, China
| | - Lin Dong
- Center on Frontiers of Computing Studies, Peking University, Beijing 100089, China
| | - Yuanyuan Shen
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, China
| | - Zhenlin Yang
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, China
| |
Collapse
|
7
|
Lanza C, Carriero S, Buijs EFM, Mortellaro S, Pizzi C, Sciacqua LV, Biondetti P, Angileri SA, Ianniello AA, Ierardi AM, Carrafiello G. Robotics in Interventional Radiology: Review of Current and Future Applications. Technol Cancer Res Treat 2023; 22:15330338231152084. [PMID: 37113061 PMCID: PMC10150437 DOI: 10.1177/15330338231152084] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
This review is a brief overview of the current status and the potential role of robotics in interventional radiology. Literature published in the last decades, with an emphasis on the last 5 years, was reviewed and the technical developments in robotics and navigational systems using CT-, MR- and US-image guidance were analyzed. Potential benefits and disadvantages of their current and future use were evaluated. The role of fusion imaging modalities and artificial intelligence was analyzed in both percutaneous and endovascular procedures. A few hundred articles describing results of single or several systems were included in our analysis.
Collapse
Affiliation(s)
- Carolina Lanza
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | - Serena Carriero
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | | | - Sveva Mortellaro
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | - Caterina Pizzi
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | | | - Pierpaolo Biondetti
- Foundation IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milan, Italy
- Università degli Studi di Milano, Milan, Italy
| | | | | | | | - Gianpaolo Carrafiello
- Foundation IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milan, Italy
- Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
8
|
Su H, Kwok KW, Cleary K, Iordachita I, Cavusoglu MC, Desai JP, Fischer GS. State of the Art and Future Opportunities in MRI-Guided Robot-Assisted Surgery and Interventions. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2022; 110:968-992. [PMID: 35756185 PMCID: PMC9231642 DOI: 10.1109/jproc.2022.3169146] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Magnetic resonance imaging (MRI) can provide high-quality 3-D visualization of target anatomy, surrounding tissue, and instrumentation, but there are significant challenges in harnessing it for effectively guiding interventional procedures. Challenges include the strong static magnetic field, rapidly switching magnetic field gradients, high-power radio frequency pulses, sensitivity to electrical noise, and constrained space to operate within the bore of the scanner. MRI has a number of advantages over other medical imaging modalities, including no ionizing radiation, excellent soft-tissue contrast that allows for visualization of tumors and other features that are not readily visible by other modalities, true 3-D imaging capabilities, including the ability to image arbitrary scan plane geometry or perform volumetric imaging, and capability for multimodality sensing, including diffusion, dynamic contrast, blood flow, blood oxygenation, temperature, and tracking of biomarkers. The use of robotic assistants within the MRI bore, alongside the patient during imaging, enables intraoperative MR imaging (iMRI) to guide a surgical intervention in a closed-loop fashion that can include tracking of tissue deformation and target motion, localization of instrumentation, and monitoring of therapy delivery. With the ever-expanding clinical use of MRI, MRI-compatible robotic systems have been heralded as a new approach to assist interventional procedures to allow physicians to treat patients more accurately and effectively. Deploying robotic systems inside the bore synergizes the visual capability of MRI and the manipulation capability of robotic assistance, resulting in a closed-loop surgery architecture. This article details the challenges and history of robotic systems intended to operate in an MRI environment and outlines promising clinical applications and associated state-of-the-art MRI-compatible robotic systems and technology for making this possible.
Collapse
Affiliation(s)
- Hao Su
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 USA
| | - Ka-Wai Kwok
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong
| | - Kevin Cleary
- Children's National Health System, Washington, DC 20010 USA
| | - Iulian Iordachita
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD 21218 USA
| | - M Cenk Cavusoglu
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Jaydev P Desai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Gregory S Fischer
- Department of Robotics Engineering, Worcester Polytechnic Institute, Worcester, MA 01609 USA
| |
Collapse
|
9
|
Li G, Patel NA, Melzer A, Sharma K, Iordachita I, Cleary K. MRI-guided lumbar spinal injections with body-mounted robotic system: cadaver studies. MINIM INVASIV THER 2022; 31:297-305. [PMID: 32729771 PMCID: PMC7855543 DOI: 10.1080/13645706.2020.1799017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/26/2020] [Indexed: 02/03/2023]
Abstract
INTRODUCTION This paper reports the system integration and cadaveric assessment of a body-mounted robotic system for MRI-guided lumbar spine injections. The system is developed to enable MR-guided interventions in closed bore magnet and avoid problems due to patient movement during cannula guidance. MATERIAL AND METHODS The robot is comprised by a lightweight and compact structure so that it can be mounted directly onto the lower back of a patient using straps. Therefore, it can minimize the influence of patient movement by moving with the patient. The MR-Conditional robot is integrated with an image-guided surgical planning workstation. A dedicated clinical workflow is created for the robot-assisted procedure to improve the conventional freehand MRI-guided procedure. RESULTS Cadaver studies were performed with both freehand and robot-assisted approaches to validate the feasibility of the clinical workflow and to assess the positioning accuracy of the robotic system. The experiment results demonstrate that the root mean square (RMS) error of the target position to be 2.57 ± 1.09 mm and of the insertion angle to be 2.17 ± 0.89°. CONCLUSION The robot-assisted approach is able to provide more accurate and reproducible cannula placements than the freehand procedure, as well as to reduce the number of insertion attempts.
Collapse
Affiliation(s)
- Gang Li
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, USA
| | - Niravkumar A. Patel
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, USA
| | - Andreas Melzer
- Institute of Medical Science and Technology, University of Dundee, Dundee, UK
| | - Karun Sharma
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health System, Washington, DC, USA
| | - Iulian Iordachita
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, USA
| | - Kevin Cleary
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health System, Washington, DC, USA
| |
Collapse
|
10
|
Zhao YJ, Wen C, Zhang YD, Zhang H. Needle Tip Pose Estimation for Ultrasound- Guided Steerable Flexible Needle with a Complicated Trajectory in Soft Tissue. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3196465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yan-Jiang Zhao
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, China
| | - Chao Wen
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, China
| | - Yong-De Zhang
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, China
| | - He Zhang
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, China
| |
Collapse
|
11
|
Fang G, Chow MCK, Ho JDL, He Z, Wang K, Ng TC, Tsoi JKH, Chan PL, Chang HC, Chan DTM, Liu YH, Holsinger FC, Chan JYK, Kwok KW. Soft robotic manipulator for intraoperative MRI-guided transoral laser microsurgery. Sci Robot 2021; 6:6/57/eabg5575. [PMID: 34408096 DOI: 10.1126/scirobotics.abg5575] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/27/2021] [Indexed: 01/14/2023]
Abstract
Magnetic resonance (MR) imaging (MRI) provides compelling features for the guidance of interventional procedures, including high-contrast soft tissue imaging, detailed visualization of physiological changes, and thermometry. Laser-based tumor ablation stands to benefit greatly from MRI guidance because 3D resection margins alongside thermal distributions can be evaluated in real time to protect critical structures while ensuring adequate resection margins. However, few studies have investigated the use of projection-based lasers like those for transoral laser microsurgery, potentially because dexterous laser steering is required at the ablation site, raising substantial challenges in the confined MRI bore and its strong magnetic field. Here, we propose an MR-safe soft robotic system for MRI-guided transoral laser microsurgery. Owing to its miniature size (Ø12 × 100 mm), inherent compliance, and five degrees of freedom, the soft robot ensures zero electromagnetic interference with MRI and enables safe and dexterous operation within the confined oral and pharyngeal cavities. The laser manipulator is rapidly fabricated with hybrid soft and hard structures and is powered by microvolume (<0.004 milliter) fluid flow to enable laser steering with enhanced stiffness and lowered hysteresis. A learning-based controller accommodates the inherent nonlinear robot actuation, which was validated with laser path-following tests. Submillimeter laser steering accuracy was demonstrated with a mean error < 0.20 mm. MRI compatibility testing demonstrated zero observable image artifacts during robot operation. Ex vivo tissue ablation and a cadaveric head-and-neck trial were carried out under MRI, where we employed MR thermometry to monitor the tissue ablation margin and thermal diffusion intraoperatively.
Collapse
Affiliation(s)
- Ge Fang
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong, China
| | - Marco C K Chow
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong, China
| | - Justin D L Ho
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong, China
| | - Zhuoliang He
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong, China
| | - Kui Wang
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong, China
| | - T C Ng
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China
| | - James K H Tsoi
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China
| | - Po-Ling Chan
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - Hing-Chiu Chang
- Department of Diagnostic Radiology, University of Hong Kong, Hong Kong, China.,Department of Biomedical Engineering, Chinese University of Hong Kong, Hong Kong, China
| | | | - Yun-Hui Liu
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Hong Kong, China
| | | | - Jason Ying-Kuen Chan
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Hong Kong, China.
| | - Ka-Wai Kwok
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
Mahcicek DI, Yildirim KD, Kasaci G, Kocaturk O. Preliminary Evaluation of Hydraulic Needle Delivery System for Magnetic Resonance Imaging-Guided Prostate Biopsy Procedures. J Med Device 2021. [DOI: 10.1115/1.4051610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Abstract
In clinical routine, the prostate biopsy procedure is performed with the guidance of transrectal ultrasound (TRUS) imaging to diagnose prostate cancer. However, the TRUS-guided prostate biopsy brings reliability concerns due to the lack of contrast difference between prostate tissue and lesions. In this study, a novel hydraulic needle delivery system that is designed for performing magnetic resonance imaging (MRI)-guided prostate biopsy procedure with transperineal approach is introduced. The feasibility of the overall system was evaluated through in vitro phantom experiments under an MRI guidance. The in vitro experiments performed using a certified prostate phantom (incorporating MRI visible lesions). MRI experiments showed that overall hydraulic biopsy needle delivery system has excellent MRI compatibility (signal to noise ratio (SNR) loss < 3%), provides acceptable targeting accuracy (average 2.05±0.46 mm) and procedure time (average 40 min).
Collapse
Affiliation(s)
- Davut Ibrahim Mahcicek
- Biomedical Engineering Department, Institute of Biomedical Engineering, Bogazici University, Kandilli Kampus, Istanbul, Cengelkoy 34684, Turkey
| | - Korel D. Yildirim
- National Institutes of Health Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Building 10, Room 2c713, Bethesda, MD 20892-1538; Biomedical Engineering Department, Institute of Biomedical Engineering, Bogazici University, Kandilli Kampus, Istanbul, Cengelkoy 34684, Turkey
| | - Gokce Kasaci
- Biomedical Engineering Department, Institute of Biomedical Engineering, Bogazici University, Kandilli Kampus, Istanbul, Cengelkoy 34684, Turkey
| | - Ozgur Kocaturk
- National Institutes of Health Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Building 10, Room 2c713, Bethesda, MD 20892-1538; Biomedical Engineering Department, Institute of Biomedical Engineering, Bogazici University, Kandilli Kampus, Istanbul, Cengelkoy 34684, Turkey
| |
Collapse
|
13
|
Unger M, Berger J, Melzer A. Robot-Assisted Image-Guided Interventions. Front Robot AI 2021; 8:664622. [PMID: 34322519 PMCID: PMC8312560 DOI: 10.3389/frobt.2021.664622] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/01/2021] [Indexed: 12/23/2022] Open
Abstract
Image guidance is a common methodology of minimally invasive procedures. Depending on the type of intervention, various imaging modalities are available. Common imaging modalities are computed tomography, magnetic resonance tomography, and ultrasound. Robotic systems have been developed to enable and improve the procedures using these imaging techniques. Spatial and technological constraints limit the development of versatile robotic systems. This paper offers a brief overview of the developments of robotic systems for image-guided interventions since 2015 and includes samples of our current research in this field.
Collapse
Affiliation(s)
- Michael Unger
- Innovation Center Computer Assisted Surgery, Leipzig, Germany
| | - Johann Berger
- Innovation Center Computer Assisted Surgery, Leipzig, Germany
| | - Andreas Melzer
- Innovation Center Computer Assisted Surgery, Leipzig, Germany.,Institute for Medical Science and Technology, IMSaT, University Dundee, Dundee, United Kingdom
| |
Collapse
|
14
|
Dai J, He Z, Fang G, Wang X, Li Y, Cheung CL, Liang L, Iordachita I, Chang HC, Kwok KW. A Robotic Platform to Navigate MRI-guided Focused Ultrasound System. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2021.3068953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Xiao Q, Monfaredi R, Musa M, Cleary K, Chen Y. MR-Conditional Actuations: A Review. Ann Biomed Eng 2020; 48:2707-2733. [PMID: 32856179 PMCID: PMC10620609 DOI: 10.1007/s10439-020-02597-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/14/2020] [Indexed: 10/23/2022]
Abstract
Magnetic resonance imaging (MRI) is one of the most prevailing technologies to enable noninvasive and radiation-free soft tissue imaging. Operating a robotic device under MRI guidance is an active research area that has the potential to provide efficient and precise surgical therapies. MR-conditional actuators that can safely drive these robotic devices without causing safety hazards or adversely affecting the image quality are crucial for the development of MR-guided robotic devices. This paper aims to summarize recent advances in actuation methods for MR-guided robots and each MR-conditional actuator was reviewed based on its working principles, construction materials, the noteworthy features, and corresponding robotic application systems, if any. Primary characteristics, such as torque, force, accuracy, and signal-to-noise ratio (SNR) variation due to the variance of the actuator, are also covered. This paper concludes with a perspective on the current development and future of MR-conditional actuators.
Collapse
Affiliation(s)
- Qingyu Xiao
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR, USA
| | | | - Mishek Musa
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Kevin Cleary
- Children's National Medical Center, Washington, DC, USA
| | - Yue Chen
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
16
|
Li G, Patel NA, Wang Y, Dumoulin C, Loew W, Loparo O, Schneider K, Sharma K, Cleary K, Fritz J, Iordachita I. Fully Actuated Body-Mounted Robotic System for MRI-Guided Lower Back Pain Injections: Initial Phantom and Cadaver Studies. IEEE Robot Autom Lett 2020; 5:5245-5251. [PMID: 33748414 PMCID: PMC7971162 DOI: 10.1109/lra.2020.3007459] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This paper reports the improved design, system integration, and initial experimental evaluation of a fully actuated body-mounted robotic system for real-time MRI-guided lower back pain injections. The 6-DOF robot is composed of a 4-DOF needle alignment module and a 2-DOF remotely actuated needle driver module, which together provide a fully actuated manipulator that can operate inside the scanner bore during imaging. The system minimizes the need to move the patient in and out of the scanner during a procedure, and thus may shorten the procedure time and streamline the clinical workflow. The robot is devised with a compact and lightweight structure that can be attached directly to the patient's lower back via straps. This approach minimizes the effect of patient motion by allowing the robot to move with the patient. The robot is integrated with an image-based surgical planning module. A dedicated clinical workflow is proposed for robot-assisted lower back pain injections under real-time MRI guidance. Targeting accuracy of the system was evaluated with a real-time MRI-guided phantom study, demonstrating the mean absolute errors (MAE) of the tip position to be 1.50±0.68mm and of the needle angle to be 1.56±0.93°. An initial cadaver study was performed to validate the feasibility of the clinical workflow, indicating the maximum error of the position to be less than 1.90mm and of the angle to be less than 3.14°.
Collapse
Affiliation(s)
- Gang Li
- Gang Li, Niravkumar A. Patel, Yanzhou Wang, and Iulian Iordachita are with Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, USA
| | - Niravkumar A Patel
- Gang Li, Niravkumar A. Patel, Yanzhou Wang, and Iulian Iordachita are with Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, USA
| | - Yanzhou Wang
- Gang Li, Niravkumar A. Patel, Yanzhou Wang, and Iulian Iordachita are with Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, USA
| | - Charles Dumoulin
- Charles Dumoulin, Wolfgang Loew, Olivia Loparo, and Katherine Schneider are with Cincinnati Childrens Hospital Medical Center, Cincinnati, OH, USA
| | - Wolfgang Loew
- Charles Dumoulin, Wolfgang Loew, Olivia Loparo, and Katherine Schneider are with Cincinnati Childrens Hospital Medical Center, Cincinnati, OH, USA
| | - Olivia Loparo
- Charles Dumoulin, Wolfgang Loew, Olivia Loparo, and Katherine Schneider are with Cincinnati Childrens Hospital Medical Center, Cincinnati, OH, USA
| | - Katherine Schneider
- Charles Dumoulin, Wolfgang Loew, Olivia Loparo, and Katherine Schneider are with Cincinnati Childrens Hospital Medical Center, Cincinnati, OH, USA
| | - Karun Sharma
- Karun Sharma and Kevin Cleary are with the Sheikh Zayed Institute for Pediatric Surgical Innovation, Childrens National Hospital, Washington, DC, USA
| | - Kevin Cleary
- Karun Sharma and Kevin Cleary are with the Sheikh Zayed Institute for Pediatric Surgical Innovation, Childrens National Hospital, Washington, DC, USA
| | - Jan Fritz
- Jan Fritz is with Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Iulian Iordachita
- Gang Li, Niravkumar A. Patel, Yanzhou Wang, and Iulian Iordachita are with Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|